Metamath Proof Explorer


Theorem pm2mpmhm

Description: The transformation of polynomial matrices into polynomials over matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 22-Oct-2019) (Revised by AV, 6-Dec-2019)

Ref Expression
Hypotheses pm2mpmhm.p 𝑃 = ( Poly1𝑅 )
pm2mpmhm.c 𝐶 = ( 𝑁 Mat 𝑃 )
pm2mpmhm.a 𝐴 = ( 𝑁 Mat 𝑅 )
pm2mpmhm.q 𝑄 = ( Poly1𝐴 )
pm2mpmhm.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
Assertion pm2mpmhm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( ( mulGrp ‘ 𝐶 ) MndHom ( mulGrp ‘ 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 pm2mpmhm.p 𝑃 = ( Poly1𝑅 )
2 pm2mpmhm.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pm2mpmhm.a 𝐴 = ( 𝑁 Mat 𝑅 )
4 pm2mpmhm.q 𝑄 = ( Poly1𝐴 )
5 pm2mpmhm.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
6 1 2 pmatring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring )
7 eqid ( mulGrp ‘ 𝐶 ) = ( mulGrp ‘ 𝐶 )
8 7 ringmgp ( 𝐶 ∈ Ring → ( mulGrp ‘ 𝐶 ) ∈ Mnd )
9 6 8 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( mulGrp ‘ 𝐶 ) ∈ Mnd )
10 3 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
11 4 ply1ring ( 𝐴 ∈ Ring → 𝑄 ∈ Ring )
12 eqid ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 )
13 12 ringmgp ( 𝑄 ∈ Ring → ( mulGrp ‘ 𝑄 ) ∈ Mnd )
14 10 11 13 3syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( mulGrp ‘ 𝑄 ) ∈ Mnd )
15 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
16 7 15 mgpbas ( Base ‘ 𝐶 ) = ( Base ‘ ( mulGrp ‘ 𝐶 ) )
17 16 eqcomi ( Base ‘ ( mulGrp ‘ 𝐶 ) ) = ( Base ‘ 𝐶 )
18 eqid ( ·𝑠𝑄 ) = ( ·𝑠𝑄 )
19 eqid ( .g ‘ ( mulGrp ‘ 𝑄 ) ) = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
20 eqid ( var1𝐴 ) = ( var1𝐴 )
21 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
22 12 21 mgpbas ( Base ‘ 𝑄 ) = ( Base ‘ ( mulGrp ‘ 𝑄 ) )
23 22 eqcomi ( Base ‘ ( mulGrp ‘ 𝑄 ) ) = ( Base ‘ 𝑄 )
24 1 2 17 18 19 20 3 4 5 23 pm2mpf ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ⟶ ( Base ‘ ( mulGrp ‘ 𝑄 ) ) )
25 1 2 3 4 5 17 pm2mpmhmlem2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ∀ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ( 𝑇 ‘ ( 𝑥 ( .r𝐶 ) 𝑦 ) ) = ( ( 𝑇𝑥 ) ( .r𝑄 ) ( 𝑇𝑦 ) ) )
26 1 2 15 18 19 20 3 4 5 idpm2idmp ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 ‘ ( 1r𝐶 ) ) = ( 1r𝑄 ) )
27 24 25 26 3jca ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 : ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ⟶ ( Base ‘ ( mulGrp ‘ 𝑄 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ∀ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ( 𝑇 ‘ ( 𝑥 ( .r𝐶 ) 𝑦 ) ) = ( ( 𝑇𝑥 ) ( .r𝑄 ) ( 𝑇𝑦 ) ) ∧ ( 𝑇 ‘ ( 1r𝐶 ) ) = ( 1r𝑄 ) ) )
28 eqid ( Base ‘ ( mulGrp ‘ 𝐶 ) ) = ( Base ‘ ( mulGrp ‘ 𝐶 ) )
29 eqid ( Base ‘ ( mulGrp ‘ 𝑄 ) ) = ( Base ‘ ( mulGrp ‘ 𝑄 ) )
30 eqid ( .r𝐶 ) = ( .r𝐶 )
31 7 30 mgpplusg ( .r𝐶 ) = ( +g ‘ ( mulGrp ‘ 𝐶 ) )
32 eqid ( .r𝑄 ) = ( .r𝑄 )
33 12 32 mgpplusg ( .r𝑄 ) = ( +g ‘ ( mulGrp ‘ 𝑄 ) )
34 eqid ( 1r𝐶 ) = ( 1r𝐶 )
35 7 34 ringidval ( 1r𝐶 ) = ( 0g ‘ ( mulGrp ‘ 𝐶 ) )
36 eqid ( 1r𝑄 ) = ( 1r𝑄 )
37 12 36 ringidval ( 1r𝑄 ) = ( 0g ‘ ( mulGrp ‘ 𝑄 ) )
38 28 29 31 33 35 37 ismhm ( 𝑇 ∈ ( ( mulGrp ‘ 𝐶 ) MndHom ( mulGrp ‘ 𝑄 ) ) ↔ ( ( ( mulGrp ‘ 𝐶 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑄 ) ∈ Mnd ) ∧ ( 𝑇 : ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ⟶ ( Base ‘ ( mulGrp ‘ 𝑄 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ∀ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ( 𝑇 ‘ ( 𝑥 ( .r𝐶 ) 𝑦 ) ) = ( ( 𝑇𝑥 ) ( .r𝑄 ) ( 𝑇𝑦 ) ) ∧ ( 𝑇 ‘ ( 1r𝐶 ) ) = ( 1r𝑄 ) ) ) )
39 9 14 27 38 syl21anbrc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( ( mulGrp ‘ 𝐶 ) MndHom ( mulGrp ‘ 𝑄 ) ) )