| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpmhm.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpmhm.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpmhm.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | pm2mpmhm.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 5 |  | pm2mpmhm.t | ⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 6 | 1 2 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring ) | 
						
							| 7 | 3 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 8 | 4 | ply1ring | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  Ring ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  Ring ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 11 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑄 )  =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 12 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 13 |  | eqid | ⊢ ( var1 ‘ 𝐴 )  =  ( var1 ‘ 𝐴 ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 15 | 1 2 10 11 12 13 3 4 14 5 | pm2mpghm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  ∈  ( 𝐶  GrpHom  𝑄 ) ) | 
						
							| 16 | 1 2 3 4 5 | pm2mpmhm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  ∈  ( ( mulGrp ‘ 𝐶 )  MndHom  ( mulGrp ‘ 𝑄 ) ) ) | 
						
							| 17 | 15 16 | jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑇  ∈  ( 𝐶  GrpHom  𝑄 )  ∧  𝑇  ∈  ( ( mulGrp ‘ 𝐶 )  MndHom  ( mulGrp ‘ 𝑄 ) ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( mulGrp ‘ 𝐶 )  =  ( mulGrp ‘ 𝐶 ) | 
						
							| 19 |  | eqid | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 20 | 18 19 | isrhm | ⊢ ( 𝑇  ∈  ( 𝐶  RingHom  𝑄 )  ↔  ( ( 𝐶  ∈  Ring  ∧  𝑄  ∈  Ring )  ∧  ( 𝑇  ∈  ( 𝐶  GrpHom  𝑄 )  ∧  𝑇  ∈  ( ( mulGrp ‘ 𝐶 )  MndHom  ( mulGrp ‘ 𝑄 ) ) ) ) ) | 
						
							| 21 | 6 9 17 20 | syl21anbrc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  ∈  ( 𝐶  RingHom  𝑄 ) ) |