| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpmhm.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpmhm.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpmhm.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | pm2mpmhm.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 5 |  | pm2mpmhm.t | ⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 6 | 1 2 3 4 5 | pm2mprhm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  ∈  ( 𝐶  RingHom  𝑄 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 8 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑄 )  =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 9 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 10 |  | eqid | ⊢ ( var1 ‘ 𝐴 )  =  ( var1 ‘ 𝐴 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 12 | 1 2 7 8 9 10 3 4 11 5 | pm2mpf1o | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝑄 ) ) | 
						
							| 13 | 7 11 | isrim | ⊢ ( 𝑇  ∈  ( 𝐶  RingIso  𝑄 )  ↔  ( 𝑇  ∈  ( 𝐶  RingHom  𝑄 )  ∧  𝑇 : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝑄 ) ) ) | 
						
							| 14 | 6 12 13 | sylanbrc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  ∈  ( 𝐶  RingIso  𝑄 ) ) |