Metamath Proof Explorer


Theorem pm2mprngiso

Description: The transformation of polynomial matrices into polynomials over matrices is a ring isomorphism. (Contributed by AV, 22-Oct-2019)

Ref Expression
Hypotheses pm2mpmhm.p P = Poly 1 R
pm2mpmhm.c C = N Mat P
pm2mpmhm.a A = N Mat R
pm2mpmhm.q Q = Poly 1 A
pm2mpmhm.t T = N pMatToMatPoly R
Assertion pm2mprngiso N Fin R Ring T C RingIso Q

Proof

Step Hyp Ref Expression
1 pm2mpmhm.p P = Poly 1 R
2 pm2mpmhm.c C = N Mat P
3 pm2mpmhm.a A = N Mat R
4 pm2mpmhm.q Q = Poly 1 A
5 pm2mpmhm.t T = N pMatToMatPoly R
6 1 2 3 4 5 pm2mprhm N Fin R Ring T C RingHom Q
7 eqid Base C = Base C
8 eqid Q = Q
9 eqid mulGrp Q = mulGrp Q
10 eqid var 1 A = var 1 A
11 eqid Base Q = Base Q
12 1 2 7 8 9 10 3 4 11 5 pm2mpf1o N Fin R Ring T : Base C 1-1 onto Base Q
13 1 2 pmatring N Fin R Ring C Ring
14 3 matring N Fin R Ring A Ring
15 4 ply1ring A Ring Q Ring
16 14 15 syl N Fin R Ring Q Ring
17 7 11 isrim C Ring Q Ring T C RingIso Q T C RingHom Q T : Base C 1-1 onto Base Q
18 13 16 17 syl2anc N Fin R Ring T C RingIso Q T C RingHom Q T : Base C 1-1 onto Base Q
19 6 12 18 mpbir2and N Fin R Ring T C RingIso Q