Metamath Proof Explorer


Theorem pm2mprngiso

Description: The transformation of polynomial matrices into polynomials over matrices is a ring isomorphism. (Contributed by AV, 22-Oct-2019)

Ref Expression
Hypotheses pm2mpmhm.p
|- P = ( Poly1 ` R )
pm2mpmhm.c
|- C = ( N Mat P )
pm2mpmhm.a
|- A = ( N Mat R )
pm2mpmhm.q
|- Q = ( Poly1 ` A )
pm2mpmhm.t
|- T = ( N pMatToMatPoly R )
Assertion pm2mprngiso
|- ( ( N e. Fin /\ R e. Ring ) -> T e. ( C RingIso Q ) )

Proof

Step Hyp Ref Expression
1 pm2mpmhm.p
 |-  P = ( Poly1 ` R )
2 pm2mpmhm.c
 |-  C = ( N Mat P )
3 pm2mpmhm.a
 |-  A = ( N Mat R )
4 pm2mpmhm.q
 |-  Q = ( Poly1 ` A )
5 pm2mpmhm.t
 |-  T = ( N pMatToMatPoly R )
6 1 2 3 4 5 pm2mprhm
 |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( C RingHom Q ) )
7 eqid
 |-  ( Base ` C ) = ( Base ` C )
8 eqid
 |-  ( .s ` Q ) = ( .s ` Q )
9 eqid
 |-  ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` Q ) )
10 eqid
 |-  ( var1 ` A ) = ( var1 ` A )
11 eqid
 |-  ( Base ` Q ) = ( Base ` Q )
12 1 2 7 8 9 10 3 4 11 5 pm2mpf1o
 |-  ( ( N e. Fin /\ R e. Ring ) -> T : ( Base ` C ) -1-1-onto-> ( Base ` Q ) )
13 1 2 pmatring
 |-  ( ( N e. Fin /\ R e. Ring ) -> C e. Ring )
14 3 matring
 |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring )
15 4 ply1ring
 |-  ( A e. Ring -> Q e. Ring )
16 14 15 syl
 |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring )
17 7 11 isrim
 |-  ( ( C e. Ring /\ Q e. Ring ) -> ( T e. ( C RingIso Q ) <-> ( T e. ( C RingHom Q ) /\ T : ( Base ` C ) -1-1-onto-> ( Base ` Q ) ) ) )
18 13 16 17 syl2anc
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( T e. ( C RingIso Q ) <-> ( T e. ( C RingHom Q ) /\ T : ( Base ` C ) -1-1-onto-> ( Base ` Q ) ) ) )
19 6 12 18 mpbir2and
 |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( C RingIso Q ) )