| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpmhm.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpmhm.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpmhm.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | pm2mpmhm.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 5 |  | pm2mpmhm.t |  |-  T = ( N pMatToMatPoly R ) | 
						
							| 6 | 1 2 3 4 5 | pm2mprhm |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( C RingHom Q ) ) | 
						
							| 7 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 8 |  | eqid |  |-  ( .s ` Q ) = ( .s ` Q ) | 
						
							| 9 |  | eqid |  |-  ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 10 |  | eqid |  |-  ( var1 ` A ) = ( var1 ` A ) | 
						
							| 11 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 12 | 1 2 7 8 9 10 3 4 11 5 | pm2mpf1o |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : ( Base ` C ) -1-1-onto-> ( Base ` Q ) ) | 
						
							| 13 | 7 11 | isrim |  |-  ( T e. ( C RingIso Q ) <-> ( T e. ( C RingHom Q ) /\ T : ( Base ` C ) -1-1-onto-> ( Base ` Q ) ) ) | 
						
							| 14 | 6 12 13 | sylanbrc |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( C RingIso Q ) ) |