| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpmhm.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpmhm.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpmhm.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | pm2mpmhm.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 5 |  | pm2mpmhm.t |  |-  T = ( N pMatToMatPoly R ) | 
						
							| 6 | 1 2 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> C e. Ring ) | 
						
							| 7 | 3 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 8 | 4 | ply1ring |  |-  ( A e. Ring -> Q e. Ring ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring ) | 
						
							| 10 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 11 |  | eqid |  |-  ( .s ` Q ) = ( .s ` Q ) | 
						
							| 12 |  | eqid |  |-  ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 13 |  | eqid |  |-  ( var1 ` A ) = ( var1 ` A ) | 
						
							| 14 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 15 | 1 2 10 11 12 13 3 4 14 5 | pm2mpghm |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpHom Q ) ) | 
						
							| 16 | 1 2 3 4 5 | pm2mpmhm |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( ( mulGrp ` C ) MndHom ( mulGrp ` Q ) ) ) | 
						
							| 17 | 15 16 | jca |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( T e. ( C GrpHom Q ) /\ T e. ( ( mulGrp ` C ) MndHom ( mulGrp ` Q ) ) ) ) | 
						
							| 18 |  | eqid |  |-  ( mulGrp ` C ) = ( mulGrp ` C ) | 
						
							| 19 |  | eqid |  |-  ( mulGrp ` Q ) = ( mulGrp ` Q ) | 
						
							| 20 | 18 19 | isrhm |  |-  ( T e. ( C RingHom Q ) <-> ( ( C e. Ring /\ Q e. Ring ) /\ ( T e. ( C GrpHom Q ) /\ T e. ( ( mulGrp ` C ) MndHom ( mulGrp ` Q ) ) ) ) ) | 
						
							| 21 | 6 9 17 20 | syl21anbrc |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( C RingHom Q ) ) |