Metamath Proof Explorer


Theorem pmmpric

Description: The ring of polynomial matrices over a ring is isomorphic to the ring of polynomials over matrices of the same dimension over the same ring. (Contributed by AV, 30-Dec-2019)

Ref Expression
Hypotheses pmmpric.p P=Poly1R
pmmpric.c C=NMatP
pmmpric.a A=NMatR
pmmpric.q Q=Poly1A
Assertion pmmpric NFinRRingC𝑟Q

Proof

Step Hyp Ref Expression
1 pmmpric.p P=Poly1R
2 pmmpric.c C=NMatP
3 pmmpric.a A=NMatR
4 pmmpric.q Q=Poly1A
5 eqid NpMatToMatPolyR=NpMatToMatPolyR
6 1 2 3 4 5 pm2mprngiso NFinRRingNpMatToMatPolyRCRingIsoQ
7 6 ne0d NFinRRingCRingIsoQ
8 brric C𝑟QCRingIsoQ
9 7 8 sylibr NFinRRingC𝑟Q