| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpmhm.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpmhm.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpmhm.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | pm2mpmhm.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 5 |  | pm2mpmhm.t | ⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 6 |  | pm2mpmhm.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 7 |  | simpll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑁  ∈  Fin ) | 
						
							| 8 |  | simplr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑅  ∈  Ring ) | 
						
							| 9 | 1 2 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐶  ∈  Ring ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 15 |  | eqid | ⊢ ( .r ‘ 𝐶 )  =  ( .r ‘ 𝐶 ) | 
						
							| 16 | 6 15 | ringcl | ⊢ ( ( 𝐶  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 17 | 10 12 14 16 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 18 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑄 )  =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 19 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 20 |  | eqid | ⊢ ( var1 ‘ 𝐴 )  =  ( var1 ‘ 𝐴 ) | 
						
							| 21 | 1 2 6 18 19 20 3 4 5 | pm2mpfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 22 | 7 8 17 21 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 23 | 1 2 6 3 | decpmatmul | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑘 )  =  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) ) | 
						
							| 24 | 23 | ad4ant234 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑘 )  =  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  =  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) | 
						
							| 26 | 25 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 29 | 3 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 30 | 29 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝐴  ∈  Ring ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 32 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 33 |  | ringcmn | ⊢ ( 𝐴  ∈  Ring  →  𝐴  ∈  CMnd ) | 
						
							| 34 | 29 33 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  CMnd ) | 
						
							| 35 | 34 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  𝐴  ∈  CMnd ) | 
						
							| 36 |  | fzfid | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( 0 ... 𝑘 )  ∈  Fin ) | 
						
							| 37 | 30 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  𝐴  ∈  Ring ) | 
						
							| 38 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  𝑅  ∈  Ring ) | 
						
							| 39 | 12 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 40 |  | elfznn0 | ⊢ ( 𝑧  ∈  ( 0 ... 𝑘 )  →  𝑧  ∈  ℕ0 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  𝑧  ∈  ℕ0 ) | 
						
							| 42 | 1 2 6 3 31 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑧  ∈  ℕ0 )  →  ( 𝑥  decompPMat  𝑧 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 43 | 38 39 41 42 | syl3anc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑥  decompPMat  𝑧 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 44 | 14 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 45 |  | fznn0sub | ⊢ ( 𝑧  ∈  ( 0 ... 𝑘 )  →  ( 𝑘  −  𝑧 )  ∈  ℕ0 ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑘  −  𝑧 )  ∈  ℕ0 ) | 
						
							| 47 | 1 2 6 3 31 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵  ∧  ( 𝑘  −  𝑧 )  ∈  ℕ0 )  →  ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 48 | 38 44 46 47 | syl3anc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 49 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 50 | 31 49 | ringcl | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑥  decompPMat  𝑧 )  ∈  ( Base ‘ 𝐴 )  ∧  ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) )  ∈  ( Base ‘ 𝐴 ) )  →  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 51 | 37 43 48 50 | syl3anc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 52 | 51 | ralrimiva | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ∀ 𝑧  ∈  ( 0 ... 𝑘 ) ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 53 | 31 35 36 52 | gsummptcl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 54 | 53 | ralrimiva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ∀ 𝑘  ∈  ℕ0 ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 55 | 1 2 6 3 49 32 | decpmatmulsumfsupp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 57 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 58 | 4 28 20 19 30 31 18 32 54 56 57 | gsummoncoe1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 )  =  ⦋ 𝑛  /  𝑘 ⦌ ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) ) | 
						
							| 59 |  | csbov2g | ⊢ ( 𝑛  ∈  ℕ0  →  ⦋ 𝑛  /  𝑘 ⦌ ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) )  =  ( 𝐴  Σg  ⦋ 𝑛  /  𝑘 ⦌ ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) ) | 
						
							| 60 |  | id | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℕ0 ) | 
						
							| 61 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 0 ... 𝑘 )  =  ( 0 ... 𝑛 ) ) | 
						
							| 62 |  | oveq1 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘  −  𝑧 )  =  ( 𝑛  −  𝑧 ) ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝑘  =  𝑛  →  ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) )  =  ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) )  =  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) ) ) | 
						
							| 65 | 61 64 | mpteq12dv | ⊢ ( 𝑘  =  𝑛  →  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) )  =  ( 𝑧  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) ) ) ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑘  =  𝑛 )  →  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) )  =  ( 𝑧  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) ) ) ) | 
						
							| 67 | 60 66 | csbied | ⊢ ( 𝑛  ∈  ℕ0  →  ⦋ 𝑛  /  𝑘 ⦌ ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) )  =  ( 𝑧  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) ) ) ) | 
						
							| 68 | 67 | oveq2d | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝐴  Σg  ⦋ 𝑛  /  𝑘 ⦌ ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) )  =  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) ) ) ) ) | 
						
							| 69 | 59 68 | eqtrd | ⊢ ( 𝑛  ∈  ℕ0  →  ⦋ 𝑛  /  𝑘 ⦌ ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) )  =  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) ) ) ) ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ⦋ 𝑛  /  𝑘 ⦌ ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) )  =  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) ) ) ) ) | 
						
							| 71 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑟  ∈  ℕ0  ↦  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑟 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟  −  𝑙 ) ) ) ) ) )  =  ( 𝑟  ∈  ℕ0  ↦  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑟 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟  −  𝑙 ) ) ) ) ) ) ) | 
						
							| 72 |  | oveq2 | ⊢ ( 𝑟  =  𝑛  →  ( 0 ... 𝑟 )  =  ( 0 ... 𝑛 ) ) | 
						
							| 73 |  | fvoveq1 | ⊢ ( 𝑟  =  𝑛  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟  −  𝑙 ) )  =  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) ) ) | 
						
							| 74 | 73 | oveq2d | ⊢ ( 𝑟  =  𝑛  →  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟  −  𝑙 ) ) )  =  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) ) ) ) | 
						
							| 75 | 72 74 | mpteq12dv | ⊢ ( 𝑟  =  𝑛  →  ( 𝑙  ∈  ( 0 ... 𝑟 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟  −  𝑙 ) ) ) )  =  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) ) ) ) ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( 𝑟  =  𝑛  →  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑟 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟  −  𝑙 ) ) ) ) )  =  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) ) ) ) ) ) | 
						
							| 77 | 76 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑟  =  𝑛 )  →  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑟 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟  −  𝑙 ) ) ) ) )  =  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) ) ) ) ) ) | 
						
							| 78 |  | ovexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) ) ) ) )  ∈  V ) | 
						
							| 79 | 71 77 57 78 | fvmptd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑟  ∈  ℕ0  ↦  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑟 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟  −  𝑙 ) ) ) ) ) ) ‘ 𝑛 )  =  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) ) ) ) ) ) | 
						
							| 80 |  | eqid | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 81 | 4 | ply1ring | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  Ring ) | 
						
							| 82 | 29 81 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  Ring ) | 
						
							| 83 |  | ringcmn | ⊢ ( 𝑄  ∈  Ring  →  𝑄  ∈  CMnd ) | 
						
							| 84 | 82 83 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  CMnd ) | 
						
							| 85 | 84 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑄  ∈  CMnd ) | 
						
							| 86 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 87 | 86 | a1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ℕ0  ∈  V ) | 
						
							| 88 | 11 | anim2i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 89 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 90 | 88 89 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 92 | 1 2 6 18 19 20 3 4 28 | pm2mpghmlem1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 93 | 91 92 | sylan | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 94 | 93 | fmpttd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) | 
						
							| 95 | 1 2 6 18 19 20 3 4 | pm2mpghmlem2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 96 | 91 95 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 97 | 28 80 85 87 94 96 | gsumcl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 98 | 13 | anim2i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 99 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 100 | 98 99 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 102 | 1 2 6 18 19 20 3 4 28 | pm2mpghmlem1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 103 | 101 102 | sylan | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 104 | 103 | fmpttd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) | 
						
							| 105 | 7 8 14 | 3jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 107 | 1 2 6 18 19 20 3 4 | pm2mpghmlem2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 108 | 106 107 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 109 | 28 80 85 87 104 108 | gsumcl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 110 |  | eqid | ⊢ ( .r ‘ 𝑄 )  =  ( .r ‘ 𝑄 ) | 
						
							| 111 | 4 110 49 28 | coe1mul | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  ( Base ‘ 𝑄 )  ∧  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  ( Base ‘ 𝑄 ) )  →  ( coe1 ‘ ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) )  =  ( 𝑟  ∈  ℕ0  ↦  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑟 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟  −  𝑙 ) ) ) ) ) ) ) | 
						
							| 112 | 111 | fveq1d | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  ( Base ‘ 𝑄 )  ∧  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  ( Base ‘ 𝑄 ) )  →  ( ( coe1 ‘ ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 )  =  ( ( 𝑟  ∈  ℕ0  ↦  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑟 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟  −  𝑙 ) ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 113 | 30 97 109 112 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 )  =  ( ( 𝑟  ∈  ℕ0  ↦  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑟 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟  −  𝑙 ) ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 114 |  | oveq2 | ⊢ ( 𝑧  =  𝑙  →  ( 𝑥  decompPMat  𝑧 )  =  ( 𝑥  decompPMat  𝑙 ) ) | 
						
							| 115 |  | oveq2 | ⊢ ( 𝑧  =  𝑙  →  ( 𝑛  −  𝑧 )  =  ( 𝑛  −  𝑙 ) ) | 
						
							| 116 | 115 | oveq2d | ⊢ ( 𝑧  =  𝑙  →  ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) )  =  ( 𝑦  decompPMat  ( 𝑛  −  𝑙 ) ) ) | 
						
							| 117 | 114 116 | oveq12d | ⊢ ( 𝑧  =  𝑙  →  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) )  =  ( ( 𝑥  decompPMat  𝑙 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑙 ) ) ) ) | 
						
							| 118 | 117 | cbvmptv | ⊢ ( 𝑧  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) ) )  =  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑙 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑙 ) ) ) ) | 
						
							| 119 | 29 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  𝐴  ∈  Ring ) | 
						
							| 120 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 121 | 12 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑥  ∈  𝐵 ) | 
						
							| 122 |  | simpr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 123 | 1 2 6 3 31 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑥  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 124 | 120 121 122 123 | syl3anc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑥  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 125 | 124 | ralrimiva | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ∀ 𝑘  ∈  ℕ0 ( 𝑥  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 126 | 8 12 | jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 127 | 126 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 128 | 1 2 6 3 32 | decpmatfsupp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑥  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 129 | 127 128 | syl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑥  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 130 |  | elfznn0 | ⊢ ( 𝑙  ∈  ( 0 ... 𝑛 )  →  𝑙  ∈  ℕ0 ) | 
						
							| 131 | 130 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  𝑙  ∈  ℕ0 ) | 
						
							| 132 | 4 28 20 19 119 31 18 32 125 129 131 | gsummoncoe1 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 )  =  ⦋ 𝑙  /  𝑘 ⦌ ( 𝑥  decompPMat  𝑘 ) ) | 
						
							| 133 |  | csbov2g | ⊢ ( 𝑙  ∈  ( 0 ... 𝑛 )  →  ⦋ 𝑙  /  𝑘 ⦌ ( 𝑥  decompPMat  𝑘 )  =  ( 𝑥  decompPMat  ⦋ 𝑙  /  𝑘 ⦌ 𝑘 ) ) | 
						
							| 134 |  | csbvarg | ⊢ ( 𝑙  ∈  ( 0 ... 𝑛 )  →  ⦋ 𝑙  /  𝑘 ⦌ 𝑘  =  𝑙 ) | 
						
							| 135 | 134 | oveq2d | ⊢ ( 𝑙  ∈  ( 0 ... 𝑛 )  →  ( 𝑥  decompPMat  ⦋ 𝑙  /  𝑘 ⦌ 𝑘 )  =  ( 𝑥  decompPMat  𝑙 ) ) | 
						
							| 136 | 133 135 | eqtrd | ⊢ ( 𝑙  ∈  ( 0 ... 𝑛 )  →  ⦋ 𝑙  /  𝑘 ⦌ ( 𝑥  decompPMat  𝑘 )  =  ( 𝑥  decompPMat  𝑙 ) ) | 
						
							| 137 | 136 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ⦋ 𝑙  /  𝑘 ⦌ ( 𝑥  decompPMat  𝑘 )  =  ( 𝑥  decompPMat  𝑙 ) ) | 
						
							| 138 | 132 137 | eqtr2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑥  decompPMat  𝑙 )  =  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ) | 
						
							| 139 | 14 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑦  ∈  𝐵 ) | 
						
							| 140 | 1 2 6 3 31 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑦  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 141 | 120 139 122 140 | syl3anc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑦  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 142 | 141 | ralrimiva | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ∀ 𝑘  ∈  ℕ0 ( 𝑦  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 143 | 8 14 | jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 144 | 143 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 145 | 1 2 6 3 32 | decpmatfsupp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 146 | 144 145 | syl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑦  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 147 |  | fznn0sub | ⊢ ( 𝑙  ∈  ( 0 ... 𝑛 )  →  ( 𝑛  −  𝑙 )  ∈  ℕ0 ) | 
						
							| 148 | 147 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑛  −  𝑙 )  ∈  ℕ0 ) | 
						
							| 149 | 4 28 20 19 119 31 18 32 142 146 148 | gsummoncoe1 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) )  =  ⦋ ( 𝑛  −  𝑙 )  /  𝑘 ⦌ ( 𝑦  decompPMat  𝑘 ) ) | 
						
							| 150 |  | ovex | ⊢ ( 𝑛  −  𝑙 )  ∈  V | 
						
							| 151 |  | csbov2g | ⊢ ( ( 𝑛  −  𝑙 )  ∈  V  →  ⦋ ( 𝑛  −  𝑙 )  /  𝑘 ⦌ ( 𝑦  decompPMat  𝑘 )  =  ( 𝑦  decompPMat  ⦋ ( 𝑛  −  𝑙 )  /  𝑘 ⦌ 𝑘 ) ) | 
						
							| 152 | 150 151 | mp1i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ⦋ ( 𝑛  −  𝑙 )  /  𝑘 ⦌ ( 𝑦  decompPMat  𝑘 )  =  ( 𝑦  decompPMat  ⦋ ( 𝑛  −  𝑙 )  /  𝑘 ⦌ 𝑘 ) ) | 
						
							| 153 |  | csbvarg | ⊢ ( ( 𝑛  −  𝑙 )  ∈  V  →  ⦋ ( 𝑛  −  𝑙 )  /  𝑘 ⦌ 𝑘  =  ( 𝑛  −  𝑙 ) ) | 
						
							| 154 | 150 153 | mp1i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ⦋ ( 𝑛  −  𝑙 )  /  𝑘 ⦌ 𝑘  =  ( 𝑛  −  𝑙 ) ) | 
						
							| 155 | 154 | oveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑦  decompPMat  ⦋ ( 𝑛  −  𝑙 )  /  𝑘 ⦌ 𝑘 )  =  ( 𝑦  decompPMat  ( 𝑛  −  𝑙 ) ) ) | 
						
							| 156 | 149 152 155 | 3eqtrrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑦  decompPMat  ( 𝑛  −  𝑙 ) )  =  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) ) ) | 
						
							| 157 | 138 156 | oveq12d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑙  ∈  ( 0 ... 𝑛 ) )  →  ( ( 𝑥  decompPMat  𝑙 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑙 ) ) )  =  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) ) ) ) | 
						
							| 158 | 157 | mpteq2dva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑙 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑙 ) ) ) )  =  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) ) ) ) ) | 
						
							| 159 | 118 158 | eqtrid | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑧  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) ) )  =  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) ) ) ) ) | 
						
							| 160 | 159 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) ) ) )  =  ( 𝐴  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛  −  𝑙 ) ) ) ) ) ) | 
						
							| 161 | 79 113 160 | 3eqtr4rd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑧 ) ) ) ) )  =  ( ( coe1 ‘ ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 162 | 58 70 161 | 3eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 163 | 162 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 164 | 29 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐴  ∈  Ring ) | 
						
							| 165 | 84 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑄  ∈  CMnd ) | 
						
							| 166 | 86 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ℕ0  ∈  V ) | 
						
							| 167 | 4 | ply1lmod | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  LMod ) | 
						
							| 168 | 29 167 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  LMod ) | 
						
							| 169 | 168 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑄  ∈  LMod ) | 
						
							| 170 | 34 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝐴  ∈  CMnd ) | 
						
							| 171 |  | fzfid | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 0 ... 𝑘 )  ∈  Fin ) | 
						
							| 172 | 29 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  𝐴  ∈  Ring ) | 
						
							| 173 |  | simp-4r | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  𝑅  ∈  Ring ) | 
						
							| 174 |  | simplrl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑥  ∈  𝐵 ) | 
						
							| 175 | 174 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 176 | 40 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  𝑧  ∈  ℕ0 ) | 
						
							| 177 | 173 175 176 42 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑥  decompPMat  𝑧 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 178 |  | simplrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑦  ∈  𝐵 ) | 
						
							| 179 | 178 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 180 | 45 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑘  −  𝑧 )  ∈  ℕ0 ) | 
						
							| 181 | 173 179 180 47 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 182 | 172 177 181 50 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ( 0 ... 𝑘 ) )  →  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 183 | 182 | ralrimiva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ∀ 𝑧  ∈  ( 0 ... 𝑘 ) ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 184 | 31 170 171 183 | gsummptcl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 185 | 29 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝐴  ∈  Ring ) | 
						
							| 186 | 4 | ply1sca | ⊢ ( 𝐴  ∈  Ring  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 187 | 185 186 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 188 | 187 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( Scalar ‘ 𝑄 )  =  𝐴 ) | 
						
							| 189 | 188 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( Base ‘ ( Scalar ‘ 𝑄 ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 190 | 184 189 | eleqtrrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 191 |  | eqid | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 192 | 4 20 191 19 28 | ply1moncl | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 193 | 185 192 | sylancom | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 194 |  | eqid | ⊢ ( Scalar ‘ 𝑄 )  =  ( Scalar ‘ 𝑄 ) | 
						
							| 195 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑄 ) )  =  ( Base ‘ ( Scalar ‘ 𝑄 ) ) | 
						
							| 196 | 28 194 18 195 | lmodvscl | ⊢ ( ( 𝑄  ∈  LMod  ∧  ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) )  ∧  ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) )  ∈  ( Base ‘ 𝑄 ) )  →  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 197 | 169 190 193 196 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 198 | 197 | fmpttd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) | 
						
							| 199 | 1 2 6 18 19 20 3 4 28 5 | pm2mpmhmlem1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 200 | 28 80 165 166 198 199 | gsumcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 201 | 82 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑄  ∈  Ring ) | 
						
							| 202 | 90 92 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 203 | 202 | fmpttd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) | 
						
							| 204 | 90 95 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 205 | 28 80 165 166 203 204 | gsumcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 206 | 100 102 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 207 | 206 | fmpttd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) | 
						
							| 208 | 7 8 14 107 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 209 | 28 80 165 166 207 208 | gsumcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 210 | 28 110 | ringcl | ⊢ ( ( 𝑄  ∈  Ring  ∧  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  ( Base ‘ 𝑄 )  ∧  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  ( Base ‘ 𝑄 ) )  →  ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 211 | 201 205 209 210 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 212 |  | eqid | ⊢ ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  =  ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 213 |  | eqid | ⊢ ( coe1 ‘ ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) )  =  ( coe1 ‘ ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 214 | 4 28 212 213 | ply1coe1eq | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  ( Base ‘ 𝑄 )  ∧  ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  ∈  ( Base ‘ 𝑄 ) )  →  ( ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 )  ↔  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ) | 
						
							| 215 | 164 200 211 214 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 )  ↔  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ) | 
						
							| 216 | 163 215 | mpbid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑧  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝑥  decompPMat  𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑘  −  𝑧 ) ) ) ) ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 217 | 22 27 216 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) )  =  ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 218 | 1 2 6 18 19 20 3 4 5 | pm2mpfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 219 | 7 8 12 218 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 220 | 1 2 6 18 19 20 3 4 5 | pm2mpfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑦  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑦 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 221 | 7 8 14 220 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑇 ‘ 𝑦 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 222 | 219 221 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑥  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑦  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 223 | 217 222 | eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 224 | 223 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝑇 ‘ 𝑦 ) ) ) |