| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpmhm.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpmhm.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpmhm.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | pm2mpmhm.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 5 |  | pm2mpmhm.t |  |-  T = ( N pMatToMatPoly R ) | 
						
							| 6 |  | pm2mpmhm.b |  |-  B = ( Base ` C ) | 
						
							| 7 |  | simpll |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> N e. Fin ) | 
						
							| 8 |  | simplr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> R e. Ring ) | 
						
							| 9 | 1 2 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> C e. Ring ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> C e. Ring ) | 
						
							| 11 |  | simpl |  |-  ( ( x e. B /\ y e. B ) -> x e. B ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> x e. B ) | 
						
							| 13 |  | simpr |  |-  ( ( x e. B /\ y e. B ) -> y e. B ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> y e. B ) | 
						
							| 15 |  | eqid |  |-  ( .r ` C ) = ( .r ` C ) | 
						
							| 16 | 6 15 | ringcl |  |-  ( ( C e. Ring /\ x e. B /\ y e. B ) -> ( x ( .r ` C ) y ) e. B ) | 
						
							| 17 | 10 12 14 16 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` C ) y ) e. B ) | 
						
							| 18 |  | eqid |  |-  ( .s ` Q ) = ( .s ` Q ) | 
						
							| 19 |  | eqid |  |-  ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 20 |  | eqid |  |-  ( var1 ` A ) = ( var1 ` A ) | 
						
							| 21 | 1 2 6 18 19 20 3 4 5 | pm2mpfval |  |-  ( ( N e. Fin /\ R e. Ring /\ ( x ( .r ` C ) y ) e. B ) -> ( T ` ( x ( .r ` C ) y ) ) = ( Q gsum ( k e. NN0 |-> ( ( ( x ( .r ` C ) y ) decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 22 | 7 8 17 21 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( T ` ( x ( .r ` C ) y ) ) = ( Q gsum ( k e. NN0 |-> ( ( ( x ( .r ` C ) y ) decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 23 | 1 2 6 3 | decpmatmul |  |-  ( ( R e. Ring /\ ( x e. B /\ y e. B ) /\ k e. NN0 ) -> ( ( x ( .r ` C ) y ) decompPMat k ) = ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ) | 
						
							| 24 | 23 | ad4ant234 |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> ( ( x ( .r ` C ) y ) decompPMat k ) = ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ) | 
						
							| 25 | 24 | oveq1d |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> ( ( ( x ( .r ` C ) y ) decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) = ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) | 
						
							| 26 | 25 | mpteq2dva |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( k e. NN0 |-> ( ( ( x ( .r ` C ) y ) decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) = ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( Q gsum ( k e. NN0 |-> ( ( ( x ( .r ` C ) y ) decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) = ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 28 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 29 | 3 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 30 | 29 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> A e. Ring ) | 
						
							| 31 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 32 |  | eqid |  |-  ( 0g ` A ) = ( 0g ` A ) | 
						
							| 33 |  | ringcmn |  |-  ( A e. Ring -> A e. CMnd ) | 
						
							| 34 | 29 33 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. CMnd ) | 
						
							| 35 | 34 | ad3antrrr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) -> A e. CMnd ) | 
						
							| 36 |  | fzfid |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) -> ( 0 ... k ) e. Fin ) | 
						
							| 37 | 30 | ad2antrr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> A e. Ring ) | 
						
							| 38 |  | simp-5r |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> R e. Ring ) | 
						
							| 39 | 12 | ad3antrrr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> x e. B ) | 
						
							| 40 |  | elfznn0 |  |-  ( z e. ( 0 ... k ) -> z e. NN0 ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> z e. NN0 ) | 
						
							| 42 | 1 2 6 3 31 | decpmatcl |  |-  ( ( R e. Ring /\ x e. B /\ z e. NN0 ) -> ( x decompPMat z ) e. ( Base ` A ) ) | 
						
							| 43 | 38 39 41 42 | syl3anc |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> ( x decompPMat z ) e. ( Base ` A ) ) | 
						
							| 44 | 14 | ad3antrrr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> y e. B ) | 
						
							| 45 |  | fznn0sub |  |-  ( z e. ( 0 ... k ) -> ( k - z ) e. NN0 ) | 
						
							| 46 | 45 | adantl |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> ( k - z ) e. NN0 ) | 
						
							| 47 | 1 2 6 3 31 | decpmatcl |  |-  ( ( R e. Ring /\ y e. B /\ ( k - z ) e. NN0 ) -> ( y decompPMat ( k - z ) ) e. ( Base ` A ) ) | 
						
							| 48 | 38 44 46 47 | syl3anc |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> ( y decompPMat ( k - z ) ) e. ( Base ` A ) ) | 
						
							| 49 |  | eqid |  |-  ( .r ` A ) = ( .r ` A ) | 
						
							| 50 | 31 49 | ringcl |  |-  ( ( A e. Ring /\ ( x decompPMat z ) e. ( Base ` A ) /\ ( y decompPMat ( k - z ) ) e. ( Base ` A ) ) -> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) e. ( Base ` A ) ) | 
						
							| 51 | 37 43 48 50 | syl3anc |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) e. ( Base ` A ) ) | 
						
							| 52 | 51 | ralrimiva |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) -> A. z e. ( 0 ... k ) ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) e. ( Base ` A ) ) | 
						
							| 53 | 31 35 36 52 | gsummptcl |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) -> ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) e. ( Base ` A ) ) | 
						
							| 54 | 53 | ralrimiva |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> A. k e. NN0 ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) e. ( Base ` A ) ) | 
						
							| 55 | 1 2 6 3 49 32 | decpmatmulsumfsupp |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( k e. NN0 |-> ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ) finSupp ( 0g ` A ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( k e. NN0 |-> ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ) finSupp ( 0g ` A ) ) | 
						
							| 57 |  | simpr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> n e. NN0 ) | 
						
							| 58 | 4 28 20 19 30 31 18 32 54 56 57 | gsummoncoe1 |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` n ) = [_ n / k ]_ ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ) | 
						
							| 59 |  | csbov2g |  |-  ( n e. NN0 -> [_ n / k ]_ ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) = ( A gsum [_ n / k ]_ ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ) | 
						
							| 60 |  | id |  |-  ( n e. NN0 -> n e. NN0 ) | 
						
							| 61 |  | oveq2 |  |-  ( k = n -> ( 0 ... k ) = ( 0 ... n ) ) | 
						
							| 62 |  | oveq1 |  |-  ( k = n -> ( k - z ) = ( n - z ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( k = n -> ( y decompPMat ( k - z ) ) = ( y decompPMat ( n - z ) ) ) | 
						
							| 64 | 63 | oveq2d |  |-  ( k = n -> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) = ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( n - z ) ) ) ) | 
						
							| 65 | 61 64 | mpteq12dv |  |-  ( k = n -> ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) = ( z e. ( 0 ... n ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( n - z ) ) ) ) ) | 
						
							| 66 | 65 | adantl |  |-  ( ( n e. NN0 /\ k = n ) -> ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) = ( z e. ( 0 ... n ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( n - z ) ) ) ) ) | 
						
							| 67 | 60 66 | csbied |  |-  ( n e. NN0 -> [_ n / k ]_ ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) = ( z e. ( 0 ... n ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( n - z ) ) ) ) ) | 
						
							| 68 | 67 | oveq2d |  |-  ( n e. NN0 -> ( A gsum [_ n / k ]_ ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) = ( A gsum ( z e. ( 0 ... n ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( n - z ) ) ) ) ) ) | 
						
							| 69 | 59 68 | eqtrd |  |-  ( n e. NN0 -> [_ n / k ]_ ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) = ( A gsum ( z e. ( 0 ... n ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( n - z ) ) ) ) ) ) | 
						
							| 70 | 69 | adantl |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> [_ n / k ]_ ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) = ( A gsum ( z e. ( 0 ... n ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( n - z ) ) ) ) ) ) | 
						
							| 71 |  | eqidd |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( r e. NN0 |-> ( A gsum ( l e. ( 0 ... r ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( r - l ) ) ) ) ) ) = ( r e. NN0 |-> ( A gsum ( l e. ( 0 ... r ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( r - l ) ) ) ) ) ) ) | 
						
							| 72 |  | oveq2 |  |-  ( r = n -> ( 0 ... r ) = ( 0 ... n ) ) | 
						
							| 73 |  | fvoveq1 |  |-  ( r = n -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( r - l ) ) = ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) ) | 
						
							| 74 | 73 | oveq2d |  |-  ( r = n -> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( r - l ) ) ) = ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) ) ) | 
						
							| 75 | 72 74 | mpteq12dv |  |-  ( r = n -> ( l e. ( 0 ... r ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( r - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) ) ) ) | 
						
							| 76 | 75 | oveq2d |  |-  ( r = n -> ( A gsum ( l e. ( 0 ... r ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( r - l ) ) ) ) ) = ( A gsum ( l e. ( 0 ... n ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) ) ) ) ) | 
						
							| 77 | 76 | adantl |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ r = n ) -> ( A gsum ( l e. ( 0 ... r ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( r - l ) ) ) ) ) = ( A gsum ( l e. ( 0 ... n ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) ) ) ) ) | 
						
							| 78 |  | ovexd |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( A gsum ( l e. ( 0 ... n ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) ) ) ) e. _V ) | 
						
							| 79 | 71 77 57 78 | fvmptd |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( ( r e. NN0 |-> ( A gsum ( l e. ( 0 ... r ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( r - l ) ) ) ) ) ) ` n ) = ( A gsum ( l e. ( 0 ... n ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) ) ) ) ) | 
						
							| 80 |  | eqid |  |-  ( 0g ` Q ) = ( 0g ` Q ) | 
						
							| 81 | 4 | ply1ring |  |-  ( A e. Ring -> Q e. Ring ) | 
						
							| 82 | 29 81 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring ) | 
						
							| 83 |  | ringcmn |  |-  ( Q e. Ring -> Q e. CMnd ) | 
						
							| 84 | 82 83 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. CMnd ) | 
						
							| 85 | 84 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> Q e. CMnd ) | 
						
							| 86 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 87 | 86 | a1i |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> NN0 e. _V ) | 
						
							| 88 | 11 | anim2i |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( ( N e. Fin /\ R e. Ring ) /\ x e. B ) ) | 
						
							| 89 |  | df-3an |  |-  ( ( N e. Fin /\ R e. Ring /\ x e. B ) <-> ( ( N e. Fin /\ R e. Ring ) /\ x e. B ) ) | 
						
							| 90 | 88 89 | sylibr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( N e. Fin /\ R e. Ring /\ x e. B ) ) | 
						
							| 91 | 90 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( N e. Fin /\ R e. Ring /\ x e. B ) ) | 
						
							| 92 | 1 2 6 18 19 20 3 4 28 | pm2mpghmlem1 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ x e. B ) /\ k e. NN0 ) -> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) e. ( Base ` Q ) ) | 
						
							| 93 | 91 92 | sylan |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) -> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) e. ( Base ` Q ) ) | 
						
							| 94 | 93 | fmpttd |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) : NN0 --> ( Base ` Q ) ) | 
						
							| 95 | 1 2 6 18 19 20 3 4 | pm2mpghmlem2 |  |-  ( ( N e. Fin /\ R e. Ring /\ x e. B ) -> ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) finSupp ( 0g ` Q ) ) | 
						
							| 96 | 91 95 | syl |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) finSupp ( 0g ` Q ) ) | 
						
							| 97 | 28 80 85 87 94 96 | gsumcl |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. ( Base ` Q ) ) | 
						
							| 98 | 13 | anim2i |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( ( N e. Fin /\ R e. Ring ) /\ y e. B ) ) | 
						
							| 99 |  | df-3an |  |-  ( ( N e. Fin /\ R e. Ring /\ y e. B ) <-> ( ( N e. Fin /\ R e. Ring ) /\ y e. B ) ) | 
						
							| 100 | 98 99 | sylibr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( N e. Fin /\ R e. Ring /\ y e. B ) ) | 
						
							| 101 | 100 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( N e. Fin /\ R e. Ring /\ y e. B ) ) | 
						
							| 102 | 1 2 6 18 19 20 3 4 28 | pm2mpghmlem1 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ y e. B ) /\ k e. NN0 ) -> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) e. ( Base ` Q ) ) | 
						
							| 103 | 101 102 | sylan |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ k e. NN0 ) -> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) e. ( Base ` Q ) ) | 
						
							| 104 | 103 | fmpttd |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) : NN0 --> ( Base ` Q ) ) | 
						
							| 105 | 7 8 14 | 3jca |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( N e. Fin /\ R e. Ring /\ y e. B ) ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( N e. Fin /\ R e. Ring /\ y e. B ) ) | 
						
							| 107 | 1 2 6 18 19 20 3 4 | pm2mpghmlem2 |  |-  ( ( N e. Fin /\ R e. Ring /\ y e. B ) -> ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) finSupp ( 0g ` Q ) ) | 
						
							| 108 | 106 107 | syl |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) finSupp ( 0g ` Q ) ) | 
						
							| 109 | 28 80 85 87 104 108 | gsumcl |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. ( Base ` Q ) ) | 
						
							| 110 |  | eqid |  |-  ( .r ` Q ) = ( .r ` Q ) | 
						
							| 111 | 4 110 49 28 | coe1mul |  |-  ( ( A e. Ring /\ ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. ( Base ` Q ) /\ ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. ( Base ` Q ) ) -> ( coe1 ` ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) = ( r e. NN0 |-> ( A gsum ( l e. ( 0 ... r ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( r - l ) ) ) ) ) ) ) | 
						
							| 112 | 111 | fveq1d |  |-  ( ( A e. Ring /\ ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. ( Base ` Q ) /\ ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. ( Base ` Q ) ) -> ( ( coe1 ` ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) ` n ) = ( ( r e. NN0 |-> ( A gsum ( l e. ( 0 ... r ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( r - l ) ) ) ) ) ) ` n ) ) | 
						
							| 113 | 30 97 109 112 | syl3anc |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) ` n ) = ( ( r e. NN0 |-> ( A gsum ( l e. ( 0 ... r ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( r - l ) ) ) ) ) ) ` n ) ) | 
						
							| 114 |  | oveq2 |  |-  ( z = l -> ( x decompPMat z ) = ( x decompPMat l ) ) | 
						
							| 115 |  | oveq2 |  |-  ( z = l -> ( n - z ) = ( n - l ) ) | 
						
							| 116 | 115 | oveq2d |  |-  ( z = l -> ( y decompPMat ( n - z ) ) = ( y decompPMat ( n - l ) ) ) | 
						
							| 117 | 114 116 | oveq12d |  |-  ( z = l -> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( n - z ) ) ) = ( ( x decompPMat l ) ( .r ` A ) ( y decompPMat ( n - l ) ) ) ) | 
						
							| 118 | 117 | cbvmptv |  |-  ( z e. ( 0 ... n ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( n - z ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( x decompPMat l ) ( .r ` A ) ( y decompPMat ( n - l ) ) ) ) | 
						
							| 119 | 29 | ad3antrrr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> A e. Ring ) | 
						
							| 120 |  | simp-5r |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) /\ k e. NN0 ) -> R e. Ring ) | 
						
							| 121 | 12 | ad3antrrr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) /\ k e. NN0 ) -> x e. B ) | 
						
							| 122 |  | simpr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 123 | 1 2 6 3 31 | decpmatcl |  |-  ( ( R e. Ring /\ x e. B /\ k e. NN0 ) -> ( x decompPMat k ) e. ( Base ` A ) ) | 
						
							| 124 | 120 121 122 123 | syl3anc |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) /\ k e. NN0 ) -> ( x decompPMat k ) e. ( Base ` A ) ) | 
						
							| 125 | 124 | ralrimiva |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> A. k e. NN0 ( x decompPMat k ) e. ( Base ` A ) ) | 
						
							| 126 | 8 12 | jca |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( R e. Ring /\ x e. B ) ) | 
						
							| 127 | 126 | ad2antrr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( R e. Ring /\ x e. B ) ) | 
						
							| 128 | 1 2 6 3 32 | decpmatfsupp |  |-  ( ( R e. Ring /\ x e. B ) -> ( k e. NN0 |-> ( x decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 129 | 127 128 | syl |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( k e. NN0 |-> ( x decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 130 |  | elfznn0 |  |-  ( l e. ( 0 ... n ) -> l e. NN0 ) | 
						
							| 131 | 130 | adantl |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> l e. NN0 ) | 
						
							| 132 | 4 28 20 19 119 31 18 32 125 129 131 | gsummoncoe1 |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) = [_ l / k ]_ ( x decompPMat k ) ) | 
						
							| 133 |  | csbov2g |  |-  ( l e. ( 0 ... n ) -> [_ l / k ]_ ( x decompPMat k ) = ( x decompPMat [_ l / k ]_ k ) ) | 
						
							| 134 |  | csbvarg |  |-  ( l e. ( 0 ... n ) -> [_ l / k ]_ k = l ) | 
						
							| 135 | 134 | oveq2d |  |-  ( l e. ( 0 ... n ) -> ( x decompPMat [_ l / k ]_ k ) = ( x decompPMat l ) ) | 
						
							| 136 | 133 135 | eqtrd |  |-  ( l e. ( 0 ... n ) -> [_ l / k ]_ ( x decompPMat k ) = ( x decompPMat l ) ) | 
						
							| 137 | 136 | adantl |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> [_ l / k ]_ ( x decompPMat k ) = ( x decompPMat l ) ) | 
						
							| 138 | 132 137 | eqtr2d |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( x decompPMat l ) = ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ) | 
						
							| 139 | 14 | ad3antrrr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) /\ k e. NN0 ) -> y e. B ) | 
						
							| 140 | 1 2 6 3 31 | decpmatcl |  |-  ( ( R e. Ring /\ y e. B /\ k e. NN0 ) -> ( y decompPMat k ) e. ( Base ` A ) ) | 
						
							| 141 | 120 139 122 140 | syl3anc |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) /\ k e. NN0 ) -> ( y decompPMat k ) e. ( Base ` A ) ) | 
						
							| 142 | 141 | ralrimiva |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> A. k e. NN0 ( y decompPMat k ) e. ( Base ` A ) ) | 
						
							| 143 | 8 14 | jca |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( R e. Ring /\ y e. B ) ) | 
						
							| 144 | 143 | ad2antrr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( R e. Ring /\ y e. B ) ) | 
						
							| 145 | 1 2 6 3 32 | decpmatfsupp |  |-  ( ( R e. Ring /\ y e. B ) -> ( k e. NN0 |-> ( y decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 146 | 144 145 | syl |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( k e. NN0 |-> ( y decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 147 |  | fznn0sub |  |-  ( l e. ( 0 ... n ) -> ( n - l ) e. NN0 ) | 
						
							| 148 | 147 | adantl |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( n - l ) e. NN0 ) | 
						
							| 149 | 4 28 20 19 119 31 18 32 142 146 148 | gsummoncoe1 |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) = [_ ( n - l ) / k ]_ ( y decompPMat k ) ) | 
						
							| 150 |  | ovex |  |-  ( n - l ) e. _V | 
						
							| 151 |  | csbov2g |  |-  ( ( n - l ) e. _V -> [_ ( n - l ) / k ]_ ( y decompPMat k ) = ( y decompPMat [_ ( n - l ) / k ]_ k ) ) | 
						
							| 152 | 150 151 | mp1i |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> [_ ( n - l ) / k ]_ ( y decompPMat k ) = ( y decompPMat [_ ( n - l ) / k ]_ k ) ) | 
						
							| 153 |  | csbvarg |  |-  ( ( n - l ) e. _V -> [_ ( n - l ) / k ]_ k = ( n - l ) ) | 
						
							| 154 | 150 153 | mp1i |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> [_ ( n - l ) / k ]_ k = ( n - l ) ) | 
						
							| 155 | 154 | oveq2d |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( y decompPMat [_ ( n - l ) / k ]_ k ) = ( y decompPMat ( n - l ) ) ) | 
						
							| 156 | 149 152 155 | 3eqtrrd |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( y decompPMat ( n - l ) ) = ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) ) | 
						
							| 157 | 138 156 | oveq12d |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( x decompPMat l ) ( .r ` A ) ( y decompPMat ( n - l ) ) ) = ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) ) ) | 
						
							| 158 | 157 | mpteq2dva |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( l e. ( 0 ... n ) |-> ( ( x decompPMat l ) ( .r ` A ) ( y decompPMat ( n - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) ) ) ) | 
						
							| 159 | 118 158 | eqtrid |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( z e. ( 0 ... n ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( n - z ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) ) ) ) | 
						
							| 160 | 159 | oveq2d |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( A gsum ( z e. ( 0 ... n ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( n - z ) ) ) ) ) = ( A gsum ( l e. ( 0 ... n ) |-> ( ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ( .r ` A ) ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` ( n - l ) ) ) ) ) ) | 
						
							| 161 | 79 113 160 | 3eqtr4rd |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( A gsum ( z e. ( 0 ... n ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( n - z ) ) ) ) ) = ( ( coe1 ` ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) ` n ) ) | 
						
							| 162 | 58 70 161 | 3eqtrd |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` n ) = ( ( coe1 ` ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) ` n ) ) | 
						
							| 163 | 162 | ralrimiva |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> A. n e. NN0 ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` n ) = ( ( coe1 ` ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) ` n ) ) | 
						
							| 164 | 29 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> A e. Ring ) | 
						
							| 165 | 84 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> Q e. CMnd ) | 
						
							| 166 | 86 | a1i |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> NN0 e. _V ) | 
						
							| 167 | 4 | ply1lmod |  |-  ( A e. Ring -> Q e. LMod ) | 
						
							| 168 | 29 167 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. LMod ) | 
						
							| 169 | 168 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> Q e. LMod ) | 
						
							| 170 | 34 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> A e. CMnd ) | 
						
							| 171 |  | fzfid |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> ( 0 ... k ) e. Fin ) | 
						
							| 172 | 29 | ad3antrrr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> A e. Ring ) | 
						
							| 173 |  | simp-4r |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> R e. Ring ) | 
						
							| 174 |  | simplrl |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> x e. B ) | 
						
							| 175 | 174 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> x e. B ) | 
						
							| 176 | 40 | adantl |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> z e. NN0 ) | 
						
							| 177 | 173 175 176 42 | syl3anc |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> ( x decompPMat z ) e. ( Base ` A ) ) | 
						
							| 178 |  | simplrr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> y e. B ) | 
						
							| 179 | 178 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> y e. B ) | 
						
							| 180 | 45 | adantl |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> ( k - z ) e. NN0 ) | 
						
							| 181 | 173 179 180 47 | syl3anc |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> ( y decompPMat ( k - z ) ) e. ( Base ` A ) ) | 
						
							| 182 | 172 177 181 50 | syl3anc |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) /\ z e. ( 0 ... k ) ) -> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) e. ( Base ` A ) ) | 
						
							| 183 | 182 | ralrimiva |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> A. z e. ( 0 ... k ) ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) e. ( Base ` A ) ) | 
						
							| 184 | 31 170 171 183 | gsummptcl |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) e. ( Base ` A ) ) | 
						
							| 185 | 29 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> A e. Ring ) | 
						
							| 186 | 4 | ply1sca |  |-  ( A e. Ring -> A = ( Scalar ` Q ) ) | 
						
							| 187 | 185 186 | syl |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> A = ( Scalar ` Q ) ) | 
						
							| 188 | 187 | eqcomd |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> ( Scalar ` Q ) = A ) | 
						
							| 189 | 188 | fveq2d |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> ( Base ` ( Scalar ` Q ) ) = ( Base ` A ) ) | 
						
							| 190 | 184 189 | eleqtrrd |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) e. ( Base ` ( Scalar ` Q ) ) ) | 
						
							| 191 |  | eqid |  |-  ( mulGrp ` Q ) = ( mulGrp ` Q ) | 
						
							| 192 | 4 20 191 19 28 | ply1moncl |  |-  ( ( A e. Ring /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) e. ( Base ` Q ) ) | 
						
							| 193 | 185 192 | sylancom |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) e. ( Base ` Q ) ) | 
						
							| 194 |  | eqid |  |-  ( Scalar ` Q ) = ( Scalar ` Q ) | 
						
							| 195 |  | eqid |  |-  ( Base ` ( Scalar ` Q ) ) = ( Base ` ( Scalar ` Q ) ) | 
						
							| 196 | 28 194 18 195 | lmodvscl |  |-  ( ( Q e. LMod /\ ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) e. ( Base ` ( Scalar ` Q ) ) /\ ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) e. ( Base ` Q ) ) -> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) e. ( Base ` Q ) ) | 
						
							| 197 | 169 190 193 196 | syl3anc |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) e. ( Base ` Q ) ) | 
						
							| 198 | 197 | fmpttd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) : NN0 --> ( Base ` Q ) ) | 
						
							| 199 | 1 2 6 18 19 20 3 4 28 5 | pm2mpmhmlem1 |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) finSupp ( 0g ` Q ) ) | 
						
							| 200 | 28 80 165 166 198 199 | gsumcl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. ( Base ` Q ) ) | 
						
							| 201 | 82 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> Q e. Ring ) | 
						
							| 202 | 90 92 | sylan |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) e. ( Base ` Q ) ) | 
						
							| 203 | 202 | fmpttd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) : NN0 --> ( Base ` Q ) ) | 
						
							| 204 | 90 95 | syl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) finSupp ( 0g ` Q ) ) | 
						
							| 205 | 28 80 165 166 203 204 | gsumcl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. ( Base ` Q ) ) | 
						
							| 206 | 100 102 | sylan |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) /\ k e. NN0 ) -> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) e. ( Base ` Q ) ) | 
						
							| 207 | 206 | fmpttd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) : NN0 --> ( Base ` Q ) ) | 
						
							| 208 | 7 8 14 107 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) finSupp ( 0g ` Q ) ) | 
						
							| 209 | 28 80 165 166 207 208 | gsumcl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. ( Base ` Q ) ) | 
						
							| 210 | 28 110 | ringcl |  |-  ( ( Q e. Ring /\ ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. ( Base ` Q ) /\ ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. ( Base ` Q ) ) -> ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) e. ( Base ` Q ) ) | 
						
							| 211 | 201 205 209 210 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) e. ( Base ` Q ) ) | 
						
							| 212 |  | eqid |  |-  ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) = ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 213 |  | eqid |  |-  ( coe1 ` ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) = ( coe1 ` ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) | 
						
							| 214 | 4 28 212 213 | ply1coe1eq |  |-  ( ( A e. Ring /\ ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. ( Base ` Q ) /\ ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) e. ( Base ` Q ) ) -> ( A. n e. NN0 ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` n ) = ( ( coe1 ` ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) ` n ) <-> ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) = ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) ) | 
						
							| 215 | 164 200 211 214 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( A. n e. NN0 ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` n ) = ( ( coe1 ` ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) ` n ) <-> ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) = ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) ) | 
						
							| 216 | 163 215 | mpbid |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( Q gsum ( k e. NN0 |-> ( ( A gsum ( z e. ( 0 ... k ) |-> ( ( x decompPMat z ) ( .r ` A ) ( y decompPMat ( k - z ) ) ) ) ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) = ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) | 
						
							| 217 | 22 27 216 | 3eqtrd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( T ` ( x ( .r ` C ) y ) ) = ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) | 
						
							| 218 | 1 2 6 18 19 20 3 4 5 | pm2mpfval |  |-  ( ( N e. Fin /\ R e. Ring /\ x e. B ) -> ( T ` x ) = ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 219 | 7 8 12 218 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( T ` x ) = ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 220 | 1 2 6 18 19 20 3 4 5 | pm2mpfval |  |-  ( ( N e. Fin /\ R e. Ring /\ y e. B ) -> ( T ` y ) = ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 221 | 7 8 14 220 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( T ` y ) = ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 222 | 219 221 | oveq12d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( ( T ` x ) ( .r ` Q ) ( T ` y ) ) = ( ( Q gsum ( k e. NN0 |-> ( ( x decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ( .r ` Q ) ( Q gsum ( k e. NN0 |-> ( ( y decompPMat k ) ( .s ` Q ) ( k ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) | 
						
							| 223 | 217 222 | eqtr4d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( T ` ( x ( .r ` C ) y ) ) = ( ( T ` x ) ( .r ` Q ) ( T ` y ) ) ) | 
						
							| 224 | 223 | ralrimivva |  |-  ( ( N e. Fin /\ R e. Ring ) -> A. x e. B A. y e. B ( T ` ( x ( .r ` C ) y ) ) = ( ( T ` x ) ( .r ` Q ) ( T ` y ) ) ) |