| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmatmul.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | decpmatmul.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | decpmatmul.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | decpmatmul.a |  |-  A = ( N Mat R ) | 
						
							| 5 |  | eqidd |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( x e. N , y e. N |-> ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) ) = ( x e. N , y e. N |-> ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) ) ) | 
						
							| 6 |  | oveq1 |  |-  ( x = i -> ( x ( U decompPMat k ) t ) = ( i ( U decompPMat k ) t ) ) | 
						
							| 7 |  | oveq2 |  |-  ( y = j -> ( t ( W decompPMat ( K - k ) ) y ) = ( t ( W decompPMat ( K - k ) ) j ) ) | 
						
							| 8 | 6 7 | oveqan12d |  |-  ( ( x = i /\ y = j ) -> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) = ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) | 
						
							| 9 | 8 | mpteq2dv |  |-  ( ( x = i /\ y = j ) -> ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) = ( t e. N |-> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( x = i /\ y = j ) -> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) = ( R gsum ( t e. N |-> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) ) ) | 
						
							| 11 | 10 | mpteq2dv |  |-  ( ( x = i /\ y = j ) -> ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) = ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) ) ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ( x = i /\ y = j ) -> ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) = ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) ) ) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( x = i /\ y = j ) ) -> ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) = ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) ) ) ) ) | 
						
							| 14 |  | simprl |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> i e. N ) | 
						
							| 15 |  | simprr |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> j e. N ) | 
						
							| 16 |  | ovexd |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) ) ) ) e. _V ) | 
						
							| 17 | 5 13 14 15 16 | ovmpod |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( i ( x e. N , y e. N |-> ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) ) j ) = ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) ) ) ) ) | 
						
							| 18 | 2 3 | matrcl |  |-  ( U e. B -> ( N e. Fin /\ P e. _V ) ) | 
						
							| 19 | 18 | simpld |  |-  ( U e. B -> N e. Fin ) | 
						
							| 20 | 19 | adantr |  |-  ( ( U e. B /\ W e. B ) -> N e. Fin ) | 
						
							| 21 | 20 | anim2i |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) ) -> ( R e. Ring /\ N e. Fin ) ) | 
						
							| 22 | 21 | ancomd |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 23 | 22 | 3adant3 |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 24 |  | eqid |  |-  ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) | 
						
							| 25 | 4 24 | matmulr |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) | 
						
							| 26 | 23 25 | syl |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) | 
						
							| 29 | 28 | eqcomd |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( .r ` A ) = ( R maMul <. N , N , N >. ) ) | 
						
							| 30 | 29 | oveqd |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) = ( ( U decompPMat k ) ( R maMul <. N , N , N >. ) ( W decompPMat ( K - k ) ) ) ) | 
						
							| 31 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 32 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 33 |  | simp1 |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> R e. Ring ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> R e. Ring ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> R e. Ring ) | 
						
							| 36 | 23 | simpld |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> N e. Fin ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> N e. Fin ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> N e. Fin ) | 
						
							| 39 |  | simpl2l |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> U e. B ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> U e. B ) | 
						
							| 41 |  | elfznn0 |  |-  ( k e. ( 0 ... K ) -> k e. NN0 ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> k e. NN0 ) | 
						
							| 43 | 35 40 42 | 3jca |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( R e. Ring /\ U e. B /\ k e. NN0 ) ) | 
						
							| 44 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 45 | 1 2 3 4 44 | decpmatcl |  |-  ( ( R e. Ring /\ U e. B /\ k e. NN0 ) -> ( U decompPMat k ) e. ( Base ` A ) ) | 
						
							| 46 | 43 45 | syl |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( U decompPMat k ) e. ( Base ` A ) ) | 
						
							| 47 | 4 31 44 | matbas2i |  |-  ( ( U decompPMat k ) e. ( Base ` A ) -> ( U decompPMat k ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 48 | 46 47 | syl |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( U decompPMat k ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 49 |  | simpl2r |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> W e. B ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> W e. B ) | 
						
							| 51 |  | fznn0sub |  |-  ( k e. ( 0 ... K ) -> ( K - k ) e. NN0 ) | 
						
							| 52 | 51 | adantl |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( K - k ) e. NN0 ) | 
						
							| 53 | 35 50 52 | 3jca |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( R e. Ring /\ W e. B /\ ( K - k ) e. NN0 ) ) | 
						
							| 54 | 1 2 3 4 44 | decpmatcl |  |-  ( ( R e. Ring /\ W e. B /\ ( K - k ) e. NN0 ) -> ( W decompPMat ( K - k ) ) e. ( Base ` A ) ) | 
						
							| 55 | 53 54 | syl |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( W decompPMat ( K - k ) ) e. ( Base ` A ) ) | 
						
							| 56 | 4 31 44 | matbas2i |  |-  ( ( W decompPMat ( K - k ) ) e. ( Base ` A ) -> ( W decompPMat ( K - k ) ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( W decompPMat ( K - k ) ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 58 | 24 31 32 35 38 38 38 48 57 | mamuval |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( ( U decompPMat k ) ( R maMul <. N , N , N >. ) ( W decompPMat ( K - k ) ) ) = ( x e. N , y e. N |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) | 
						
							| 59 | 30 58 | eqtrd |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) = ( x e. N , y e. N |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) | 
						
							| 60 | 59 | mpteq2dva |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) = ( k e. ( 0 ... K ) |-> ( x e. N , y e. N |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) ) | 
						
							| 61 | 60 | oveq2d |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( A gsum ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) ) = ( A gsum ( k e. ( 0 ... K ) |-> ( x e. N , y e. N |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) ) ) | 
						
							| 62 |  | eqid |  |-  ( 0g ` A ) = ( 0g ` A ) | 
						
							| 63 |  | ovexd |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( 0 ... K ) e. _V ) | 
						
							| 64 |  | ringcmn |  |-  ( R e. Ring -> R e. CMnd ) | 
						
							| 65 | 33 64 | syl |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> R e. CMnd ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> R e. CMnd ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> R e. CMnd ) | 
						
							| 68 | 67 | 3ad2ant1 |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) -> R e. CMnd ) | 
						
							| 69 | 38 | 3ad2ant1 |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) -> N e. Fin ) | 
						
							| 70 | 35 | 3ad2ant1 |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) -> R e. Ring ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) /\ t e. N ) -> R e. Ring ) | 
						
							| 72 |  | simpl2 |  |-  ( ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) /\ t e. N ) -> x e. N ) | 
						
							| 73 |  | simpr |  |-  ( ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) /\ t e. N ) -> t e. N ) | 
						
							| 74 | 43 | 3ad2ant1 |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) -> ( R e. Ring /\ U e. B /\ k e. NN0 ) ) | 
						
							| 75 | 74 | adantr |  |-  ( ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) /\ t e. N ) -> ( R e. Ring /\ U e. B /\ k e. NN0 ) ) | 
						
							| 76 | 75 45 | syl |  |-  ( ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) /\ t e. N ) -> ( U decompPMat k ) e. ( Base ` A ) ) | 
						
							| 77 | 4 31 44 72 73 76 | matecld |  |-  ( ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) /\ t e. N ) -> ( x ( U decompPMat k ) t ) e. ( Base ` R ) ) | 
						
							| 78 |  | simpl3 |  |-  ( ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) /\ t e. N ) -> y e. N ) | 
						
							| 79 | 55 | 3ad2ant1 |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) -> ( W decompPMat ( K - k ) ) e. ( Base ` A ) ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) /\ t e. N ) -> ( W decompPMat ( K - k ) ) e. ( Base ` A ) ) | 
						
							| 81 | 4 31 44 73 78 80 | matecld |  |-  ( ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) /\ t e. N ) -> ( t ( W decompPMat ( K - k ) ) y ) e. ( Base ` R ) ) | 
						
							| 82 | 31 32 | ringcl |  |-  ( ( R e. Ring /\ ( x ( U decompPMat k ) t ) e. ( Base ` R ) /\ ( t ( W decompPMat ( K - k ) ) y ) e. ( Base ` R ) ) -> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) e. ( Base ` R ) ) | 
						
							| 83 | 71 77 81 82 | syl3anc |  |-  ( ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) /\ t e. N ) -> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) e. ( Base ` R ) ) | 
						
							| 84 | 83 | ralrimiva |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) -> A. t e. N ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) e. ( Base ` R ) ) | 
						
							| 85 | 31 68 69 84 | gsummptcl |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ x e. N /\ y e. N ) -> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) e. ( Base ` R ) ) | 
						
							| 86 | 4 31 44 38 35 85 | matbas2d |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( x e. N , y e. N |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) e. ( Base ` A ) ) | 
						
							| 87 |  | eqid |  |-  ( k e. ( 0 ... K ) |-> ( x e. N , y e. N |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) = ( k e. ( 0 ... K ) |-> ( x e. N , y e. N |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) | 
						
							| 88 |  | fzfid |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( 0 ... K ) e. Fin ) | 
						
							| 89 |  | simpl |  |-  ( ( N e. Fin /\ P e. _V ) -> N e. Fin ) | 
						
							| 90 | 89 89 | jca |  |-  ( ( N e. Fin /\ P e. _V ) -> ( N e. Fin /\ N e. Fin ) ) | 
						
							| 91 | 18 90 | syl |  |-  ( U e. B -> ( N e. Fin /\ N e. Fin ) ) | 
						
							| 92 | 91 | adantr |  |-  ( ( U e. B /\ W e. B ) -> ( N e. Fin /\ N e. Fin ) ) | 
						
							| 93 | 92 | 3ad2ant2 |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> ( N e. Fin /\ N e. Fin ) ) | 
						
							| 94 | 93 | adantr |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( N e. Fin /\ N e. Fin ) ) | 
						
							| 95 | 94 | adantr |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( N e. Fin /\ N e. Fin ) ) | 
						
							| 96 |  | mpoexga |  |-  ( ( N e. Fin /\ N e. Fin ) -> ( x e. N , y e. N |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) e. _V ) | 
						
							| 97 | 95 96 | syl |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( x e. N , y e. N |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) e. _V ) | 
						
							| 98 |  | fvexd |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( 0g ` A ) e. _V ) | 
						
							| 99 | 87 88 97 98 | fsuppmptdm |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( k e. ( 0 ... K ) |-> ( x e. N , y e. N |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) finSupp ( 0g ` A ) ) | 
						
							| 100 | 4 44 62 37 63 34 86 99 | matgsum |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( A gsum ( k e. ( 0 ... K ) |-> ( x e. N , y e. N |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) ) = ( x e. N , y e. N |-> ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) ) ) | 
						
							| 101 | 61 100 | eqtrd |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( A gsum ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) ) = ( x e. N , y e. N |-> ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) ) ) | 
						
							| 102 | 101 | oveqd |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( i ( A gsum ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) ) j ) = ( i ( x e. N , y e. N |-> ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( x ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) y ) ) ) ) ) ) ) j ) ) | 
						
							| 103 |  | simpl2 |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( U e. B /\ W e. B ) ) | 
						
							| 104 |  | simpl3 |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> K e. NN0 ) | 
						
							| 105 | 1 2 3 | decpmatmullem |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ W e. B ) /\ ( i e. N /\ j e. N /\ K e. NN0 ) ) -> ( i ( ( U ( .r ` C ) W ) decompPMat K ) j ) = ( R gsum ( t e. N |-> ( R gsum ( k e. ( 0 ... K ) |-> ( ( ( coe1 ` ( i U t ) ) ` k ) ( .r ` R ) ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) ) ) ) ) ) | 
						
							| 106 | 37 34 103 14 15 104 105 | syl213anc |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( i ( ( U ( .r ` C ) W ) decompPMat K ) j ) = ( R gsum ( t e. N |-> ( R gsum ( k e. ( 0 ... K ) |-> ( ( ( coe1 ` ( i U t ) ) ` k ) ( .r ` R ) ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) ) ) ) ) ) | 
						
							| 107 |  | simpll1 |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> R e. Ring ) | 
						
							| 108 |  | simplrl |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> i e. N ) | 
						
							| 109 |  | simprl |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> t e. N ) | 
						
							| 110 | 3 | eleq2i |  |-  ( U e. B <-> U e. ( Base ` C ) ) | 
						
							| 111 | 110 | biimpi |  |-  ( U e. B -> U e. ( Base ` C ) ) | 
						
							| 112 | 111 | adantr |  |-  ( ( U e. B /\ W e. B ) -> U e. ( Base ` C ) ) | 
						
							| 113 | 112 | 3ad2ant2 |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> U e. ( Base ` C ) ) | 
						
							| 114 | 113 | adantr |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> U e. ( Base ` C ) ) | 
						
							| 115 | 114 | adantr |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> U e. ( Base ` C ) ) | 
						
							| 116 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 117 | 2 116 | matecl |  |-  ( ( i e. N /\ t e. N /\ U e. ( Base ` C ) ) -> ( i U t ) e. ( Base ` P ) ) | 
						
							| 118 | 108 109 115 117 | syl3anc |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> ( i U t ) e. ( Base ` P ) ) | 
						
							| 119 | 41 | ad2antll |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> k e. NN0 ) | 
						
							| 120 |  | eqid |  |-  ( coe1 ` ( i U t ) ) = ( coe1 ` ( i U t ) ) | 
						
							| 121 | 120 116 1 31 | coe1fvalcl |  |-  ( ( ( i U t ) e. ( Base ` P ) /\ k e. NN0 ) -> ( ( coe1 ` ( i U t ) ) ` k ) e. ( Base ` R ) ) | 
						
							| 122 | 118 119 121 | syl2anc |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> ( ( coe1 ` ( i U t ) ) ` k ) e. ( Base ` R ) ) | 
						
							| 123 |  | simplrr |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> j e. N ) | 
						
							| 124 | 49 | adantr |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> W e. B ) | 
						
							| 125 | 2 116 3 109 123 124 | matecld |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> ( t W j ) e. ( Base ` P ) ) | 
						
							| 126 | 51 | ad2antll |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> ( K - k ) e. NN0 ) | 
						
							| 127 |  | eqid |  |-  ( coe1 ` ( t W j ) ) = ( coe1 ` ( t W j ) ) | 
						
							| 128 | 127 116 1 31 | coe1fvalcl |  |-  ( ( ( t W j ) e. ( Base ` P ) /\ ( K - k ) e. NN0 ) -> ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) e. ( Base ` R ) ) | 
						
							| 129 | 125 126 128 | syl2anc |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) e. ( Base ` R ) ) | 
						
							| 130 | 31 32 | ringcl |  |-  ( ( R e. Ring /\ ( ( coe1 ` ( i U t ) ) ` k ) e. ( Base ` R ) /\ ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) e. ( Base ` R ) ) -> ( ( ( coe1 ` ( i U t ) ) ` k ) ( .r ` R ) ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) e. ( Base ` R ) ) | 
						
							| 131 | 107 122 129 130 | syl3anc |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ ( t e. N /\ k e. ( 0 ... K ) ) ) -> ( ( ( coe1 ` ( i U t ) ) ` k ) ( .r ` R ) ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) e. ( Base ` R ) ) | 
						
							| 132 | 31 66 37 88 131 | gsumcom3fi |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( R gsum ( t e. N |-> ( R gsum ( k e. ( 0 ... K ) |-> ( ( ( coe1 ` ( i U t ) ) ` k ) ( .r ` R ) ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) ) ) ) ) = ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( ( coe1 ` ( i U t ) ) ` k ) ( .r ` R ) ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) ) ) ) ) ) | 
						
							| 133 | 14 | adantr |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> i e. N ) | 
						
							| 134 | 133 | anim1i |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ t e. N ) -> ( i e. N /\ t e. N ) ) | 
						
							| 135 | 1 2 3 | decpmate |  |-  ( ( ( R e. Ring /\ U e. B /\ k e. NN0 ) /\ ( i e. N /\ t e. N ) ) -> ( i ( U decompPMat k ) t ) = ( ( coe1 ` ( i U t ) ) ` k ) ) | 
						
							| 136 | 43 134 135 | syl2an2r |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ t e. N ) -> ( i ( U decompPMat k ) t ) = ( ( coe1 ` ( i U t ) ) ` k ) ) | 
						
							| 137 |  | simplrr |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> j e. N ) | 
						
							| 138 | 137 | anim1ci |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ t e. N ) -> ( t e. N /\ j e. N ) ) | 
						
							| 139 | 1 2 3 | decpmate |  |-  ( ( ( R e. Ring /\ W e. B /\ ( K - k ) e. NN0 ) /\ ( t e. N /\ j e. N ) ) -> ( t ( W decompPMat ( K - k ) ) j ) = ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) | 
						
							| 140 | 53 138 139 | syl2an2r |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ t e. N ) -> ( t ( W decompPMat ( K - k ) ) j ) = ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) | 
						
							| 141 | 136 140 | oveq12d |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ t e. N ) -> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) = ( ( ( coe1 ` ( i U t ) ) ` k ) ( .r ` R ) ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) ) | 
						
							| 142 | 141 | eqcomd |  |-  ( ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) /\ t e. N ) -> ( ( ( coe1 ` ( i U t ) ) ` k ) ( .r ` R ) ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) = ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) | 
						
							| 143 | 142 | mpteq2dva |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( t e. N |-> ( ( ( coe1 ` ( i U t ) ) ` k ) ( .r ` R ) ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) ) = ( t e. N |-> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) ) | 
						
							| 144 | 143 | oveq2d |  |-  ( ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) /\ k e. ( 0 ... K ) ) -> ( R gsum ( t e. N |-> ( ( ( coe1 ` ( i U t ) ) ` k ) ( .r ` R ) ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) ) ) = ( R gsum ( t e. N |-> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) ) ) | 
						
							| 145 | 144 | mpteq2dva |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( ( coe1 ` ( i U t ) ) ` k ) ( .r ` R ) ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) ) ) ) = ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) ) ) ) | 
						
							| 146 | 145 | oveq2d |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( ( coe1 ` ( i U t ) ) ` k ) ( .r ` R ) ( ( coe1 ` ( t W j ) ) ` ( K - k ) ) ) ) ) ) ) = ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) ) ) ) ) | 
						
							| 147 | 106 132 146 | 3eqtrd |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( i ( ( U ( .r ` C ) W ) decompPMat K ) j ) = ( R gsum ( k e. ( 0 ... K ) |-> ( R gsum ( t e. N |-> ( ( i ( U decompPMat k ) t ) ( .r ` R ) ( t ( W decompPMat ( K - k ) ) j ) ) ) ) ) ) ) | 
						
							| 148 | 17 102 147 | 3eqtr4rd |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ ( i e. N /\ j e. N ) ) -> ( i ( ( U ( .r ` C ) W ) decompPMat K ) j ) = ( i ( A gsum ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) ) j ) ) | 
						
							| 149 | 148 | ralrimivva |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> A. i e. N A. j e. N ( i ( ( U ( .r ` C ) W ) decompPMat K ) j ) = ( i ( A gsum ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) ) j ) ) | 
						
							| 150 | 1 2 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> C e. Ring ) | 
						
							| 151 | 22 150 | syl |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) ) -> C e. Ring ) | 
						
							| 152 |  | simprl |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) ) -> U e. B ) | 
						
							| 153 |  | simprr |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) ) -> W e. B ) | 
						
							| 154 |  | eqid |  |-  ( .r ` C ) = ( .r ` C ) | 
						
							| 155 | 3 154 | ringcl |  |-  ( ( C e. Ring /\ U e. B /\ W e. B ) -> ( U ( .r ` C ) W ) e. B ) | 
						
							| 156 | 151 152 153 155 | syl3anc |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) ) -> ( U ( .r ` C ) W ) e. B ) | 
						
							| 157 | 156 | 3adant3 |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> ( U ( .r ` C ) W ) e. B ) | 
						
							| 158 | 1 2 3 4 44 | decpmatcl |  |-  ( ( R e. Ring /\ ( U ( .r ` C ) W ) e. B /\ K e. NN0 ) -> ( ( U ( .r ` C ) W ) decompPMat K ) e. ( Base ` A ) ) | 
						
							| 159 | 157 158 | syld3an2 |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> ( ( U ( .r ` C ) W ) decompPMat K ) e. ( Base ` A ) ) | 
						
							| 160 | 4 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 161 | 23 160 | syl |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> A e. Ring ) | 
						
							| 162 |  | ringcmn |  |-  ( A e. Ring -> A e. CMnd ) | 
						
							| 163 | 161 162 | syl |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> A e. CMnd ) | 
						
							| 164 |  | fzfid |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> ( 0 ... K ) e. Fin ) | 
						
							| 165 | 161 | adantr |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ k e. ( 0 ... K ) ) -> A e. Ring ) | 
						
							| 166 | 33 | adantr |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ k e. ( 0 ... K ) ) -> R e. Ring ) | 
						
							| 167 |  | simpl2l |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ k e. ( 0 ... K ) ) -> U e. B ) | 
						
							| 168 | 41 | adantl |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ k e. ( 0 ... K ) ) -> k e. NN0 ) | 
						
							| 169 | 166 167 168 | 3jca |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ k e. ( 0 ... K ) ) -> ( R e. Ring /\ U e. B /\ k e. NN0 ) ) | 
						
							| 170 | 169 45 | syl |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ k e. ( 0 ... K ) ) -> ( U decompPMat k ) e. ( Base ` A ) ) | 
						
							| 171 |  | simpl2r |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ k e. ( 0 ... K ) ) -> W e. B ) | 
						
							| 172 | 51 | adantl |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ k e. ( 0 ... K ) ) -> ( K - k ) e. NN0 ) | 
						
							| 173 | 166 171 172 | 3jca |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ k e. ( 0 ... K ) ) -> ( R e. Ring /\ W e. B /\ ( K - k ) e. NN0 ) ) | 
						
							| 174 | 173 54 | syl |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ k e. ( 0 ... K ) ) -> ( W decompPMat ( K - k ) ) e. ( Base ` A ) ) | 
						
							| 175 |  | eqid |  |-  ( .r ` A ) = ( .r ` A ) | 
						
							| 176 | 44 175 | ringcl |  |-  ( ( A e. Ring /\ ( U decompPMat k ) e. ( Base ` A ) /\ ( W decompPMat ( K - k ) ) e. ( Base ` A ) ) -> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) e. ( Base ` A ) ) | 
						
							| 177 | 165 170 174 176 | syl3anc |  |-  ( ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) /\ k e. ( 0 ... K ) ) -> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) e. ( Base ` A ) ) | 
						
							| 178 | 177 | ralrimiva |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> A. k e. ( 0 ... K ) ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) e. ( Base ` A ) ) | 
						
							| 179 | 44 163 164 178 | gsummptcl |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> ( A gsum ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) ) e. ( Base ` A ) ) | 
						
							| 180 | 4 44 | eqmat |  |-  ( ( ( ( U ( .r ` C ) W ) decompPMat K ) e. ( Base ` A ) /\ ( A gsum ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) ) e. ( Base ` A ) ) -> ( ( ( U ( .r ` C ) W ) decompPMat K ) = ( A gsum ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) ) <-> A. i e. N A. j e. N ( i ( ( U ( .r ` C ) W ) decompPMat K ) j ) = ( i ( A gsum ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) ) j ) ) ) | 
						
							| 181 | 159 179 180 | syl2anc |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> ( ( ( U ( .r ` C ) W ) decompPMat K ) = ( A gsum ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) ) <-> A. i e. N A. j e. N ( i ( ( U ( .r ` C ) W ) decompPMat K ) j ) = ( i ( A gsum ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) ) j ) ) ) | 
						
							| 182 | 149 181 | mpbird |  |-  ( ( R e. Ring /\ ( U e. B /\ W e. B ) /\ K e. NN0 ) -> ( ( U ( .r ` C ) W ) decompPMat K ) = ( A gsum ( k e. ( 0 ... K ) |-> ( ( U decompPMat k ) ( .r ` A ) ( W decompPMat ( K - k ) ) ) ) ) ) |