| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matgsum.a |
|- A = ( N Mat R ) |
| 2 |
|
matgsum.b |
|- B = ( Base ` A ) |
| 3 |
|
matgsum.z |
|- .0. = ( 0g ` A ) |
| 4 |
|
matgsum.i |
|- ( ph -> N e. Fin ) |
| 5 |
|
matgsum.j |
|- ( ph -> J e. W ) |
| 6 |
|
matgsum.r |
|- ( ph -> R e. Ring ) |
| 7 |
|
matgsum.f |
|- ( ( ph /\ y e. J ) -> ( i e. N , j e. N |-> U ) e. B ) |
| 8 |
|
matgsum.w |
|- ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) finSupp .0. ) |
| 9 |
5
|
mptexd |
|- ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) e. _V ) |
| 10 |
1
|
ovexi |
|- A e. _V |
| 11 |
10
|
a1i |
|- ( ph -> A e. _V ) |
| 12 |
|
ovexd |
|- ( ph -> ( R freeLMod ( N X. N ) ) e. _V ) |
| 13 |
|
eqid |
|- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
| 14 |
1 13
|
matbas |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 15 |
4 6 14
|
syl2anc |
|- ( ph -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 16 |
15
|
eqcomd |
|- ( ph -> ( Base ` A ) = ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 17 |
1 13
|
matplusg |
|- ( ( N e. Fin /\ R e. Ring ) -> ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` A ) ) |
| 18 |
4 6 17
|
syl2anc |
|- ( ph -> ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` A ) ) |
| 19 |
18
|
eqcomd |
|- ( ph -> ( +g ` A ) = ( +g ` ( R freeLMod ( N X. N ) ) ) ) |
| 20 |
9 11 12 16 19
|
gsumpropd |
|- ( ph -> ( A gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) ) |
| 21 |
|
mpompts |
|- ( i e. N , j e. N |-> U ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) |
| 22 |
21
|
a1i |
|- ( ph -> ( i e. N , j e. N |-> U ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) |
| 23 |
22
|
mpteq2dv |
|- ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) = ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) |
| 24 |
23
|
oveq2d |
|- ( ph -> ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) ) |
| 25 |
|
eqid |
|- ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) |
| 26 |
|
eqid |
|- ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` ( R freeLMod ( N X. N ) ) ) |
| 27 |
|
xpfi |
|- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
| 28 |
4 4 27
|
syl2anc |
|- ( ph -> ( N X. N ) e. Fin ) |
| 29 |
7 2
|
eleqtrdi |
|- ( ( ph /\ y e. J ) -> ( i e. N , j e. N |-> U ) e. ( Base ` A ) ) |
| 30 |
21
|
eqcomi |
|- ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) = ( i e. N , j e. N |-> U ) |
| 31 |
30
|
a1i |
|- ( ( ph /\ y e. J ) -> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) = ( i e. N , j e. N |-> U ) ) |
| 32 |
4 6
|
jca |
|- ( ph -> ( N e. Fin /\ R e. Ring ) ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ y e. J ) -> ( N e. Fin /\ R e. Ring ) ) |
| 34 |
33 14
|
syl |
|- ( ( ph /\ y e. J ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 35 |
29 31 34
|
3eltr4d |
|- ( ( ph /\ y e. J ) -> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 36 |
30
|
mpteq2i |
|- ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) = ( y e. J |-> ( i e. N , j e. N |-> U ) ) |
| 37 |
3
|
eqcomi |
|- ( 0g ` A ) = .0. |
| 38 |
8 36 37
|
3brtr4g |
|- ( ph -> ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) finSupp ( 0g ` A ) ) |
| 39 |
1 13
|
mat0 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` A ) ) |
| 40 |
4 6 39
|
syl2anc |
|- ( ph -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` A ) ) |
| 41 |
38 40
|
breqtrrd |
|- ( ph -> ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) finSupp ( 0g ` ( R freeLMod ( N X. N ) ) ) ) |
| 42 |
13 25 26 28 5 6 35 41
|
frlmgsum |
|- ( ph -> ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) ) |
| 43 |
24 42
|
eqtrd |
|- ( ph -> ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) ) |
| 44 |
|
fvex |
|- ( 2nd ` z ) e. _V |
| 45 |
|
csbov2g |
|- ( ( 2nd ` z ) e. _V -> [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) = ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) ) |
| 46 |
44 45
|
ax-mp |
|- [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) = ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) |
| 47 |
46
|
csbeq2i |
|- [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) = [_ ( 1st ` z ) / i ]_ ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) |
| 48 |
|
fvex |
|- ( 1st ` z ) e. _V |
| 49 |
|
csbov2g |
|- ( ( 1st ` z ) e. _V -> [_ ( 1st ` z ) / i ]_ ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) = ( R gsum [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) ) |
| 50 |
48 49
|
ax-mp |
|- [_ ( 1st ` z ) / i ]_ ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) = ( R gsum [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) |
| 51 |
|
csbmpt2 |
|- ( ( 2nd ` z ) e. _V -> [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) ) |
| 52 |
44 51
|
ax-mp |
|- [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) |
| 53 |
52
|
csbeq2i |
|- [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = [_ ( 1st ` z ) / i ]_ ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) |
| 54 |
|
csbmpt2 |
|- ( ( 1st ` z ) e. _V -> [_ ( 1st ` z ) / i ]_ ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) = ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) |
| 55 |
48 54
|
ax-mp |
|- [_ ( 1st ` z ) / i ]_ ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) = ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) |
| 56 |
53 55
|
eqtri |
|- [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) |
| 57 |
56
|
oveq2i |
|- ( R gsum [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) = ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) |
| 58 |
47 50 57
|
3eqtrri |
|- ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) = [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) |
| 59 |
58
|
mpteq2i |
|- ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) ) |
| 60 |
|
mpompts |
|- ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) ) |
| 61 |
59 60
|
eqtr4i |
|- ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) |
| 62 |
61
|
a1i |
|- ( ph -> ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) ) |
| 63 |
20 43 62
|
3eqtrd |
|- ( ph -> ( A gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) ) |