Step |
Hyp |
Ref |
Expression |
1 |
|
matgsum.a |
|- A = ( N Mat R ) |
2 |
|
matgsum.b |
|- B = ( Base ` A ) |
3 |
|
matgsum.z |
|- .0. = ( 0g ` A ) |
4 |
|
matgsum.i |
|- ( ph -> N e. Fin ) |
5 |
|
matgsum.j |
|- ( ph -> J e. W ) |
6 |
|
matgsum.r |
|- ( ph -> R e. Ring ) |
7 |
|
matgsum.f |
|- ( ( ph /\ y e. J ) -> ( i e. N , j e. N |-> U ) e. B ) |
8 |
|
matgsum.w |
|- ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) finSupp .0. ) |
9 |
5
|
mptexd |
|- ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) e. _V ) |
10 |
1
|
ovexi |
|- A e. _V |
11 |
10
|
a1i |
|- ( ph -> A e. _V ) |
12 |
|
ovexd |
|- ( ph -> ( R freeLMod ( N X. N ) ) e. _V ) |
13 |
|
eqid |
|- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
14 |
1 13
|
matbas |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
15 |
4 6 14
|
syl2anc |
|- ( ph -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
16 |
15
|
eqcomd |
|- ( ph -> ( Base ` A ) = ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
17 |
1 13
|
matplusg |
|- ( ( N e. Fin /\ R e. Ring ) -> ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` A ) ) |
18 |
4 6 17
|
syl2anc |
|- ( ph -> ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` A ) ) |
19 |
18
|
eqcomd |
|- ( ph -> ( +g ` A ) = ( +g ` ( R freeLMod ( N X. N ) ) ) ) |
20 |
9 11 12 16 19
|
gsumpropd |
|- ( ph -> ( A gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) ) |
21 |
|
mpompts |
|- ( i e. N , j e. N |-> U ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) |
22 |
21
|
a1i |
|- ( ph -> ( i e. N , j e. N |-> U ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) |
23 |
22
|
mpteq2dv |
|- ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) = ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) |
24 |
23
|
oveq2d |
|- ( ph -> ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) ) |
25 |
|
eqid |
|- ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) |
26 |
|
eqid |
|- ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` ( R freeLMod ( N X. N ) ) ) |
27 |
|
xpfi |
|- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
28 |
4 4 27
|
syl2anc |
|- ( ph -> ( N X. N ) e. Fin ) |
29 |
7 2
|
eleqtrdi |
|- ( ( ph /\ y e. J ) -> ( i e. N , j e. N |-> U ) e. ( Base ` A ) ) |
30 |
21
|
eqcomi |
|- ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) = ( i e. N , j e. N |-> U ) |
31 |
30
|
a1i |
|- ( ( ph /\ y e. J ) -> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) = ( i e. N , j e. N |-> U ) ) |
32 |
4 6
|
jca |
|- ( ph -> ( N e. Fin /\ R e. Ring ) ) |
33 |
32
|
adantr |
|- ( ( ph /\ y e. J ) -> ( N e. Fin /\ R e. Ring ) ) |
34 |
33 14
|
syl |
|- ( ( ph /\ y e. J ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
35 |
29 31 34
|
3eltr4d |
|- ( ( ph /\ y e. J ) -> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
36 |
30
|
mpteq2i |
|- ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) = ( y e. J |-> ( i e. N , j e. N |-> U ) ) |
37 |
3
|
eqcomi |
|- ( 0g ` A ) = .0. |
38 |
8 36 37
|
3brtr4g |
|- ( ph -> ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) finSupp ( 0g ` A ) ) |
39 |
1 13
|
mat0 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` A ) ) |
40 |
4 6 39
|
syl2anc |
|- ( ph -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` A ) ) |
41 |
38 40
|
breqtrrd |
|- ( ph -> ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) finSupp ( 0g ` ( R freeLMod ( N X. N ) ) ) ) |
42 |
13 25 26 28 5 6 35 41
|
frlmgsum |
|- ( ph -> ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) ) |
43 |
24 42
|
eqtrd |
|- ( ph -> ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) ) |
44 |
|
fvex |
|- ( 2nd ` z ) e. _V |
45 |
|
csbov2g |
|- ( ( 2nd ` z ) e. _V -> [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) = ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) ) |
46 |
44 45
|
ax-mp |
|- [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) = ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) |
47 |
46
|
csbeq2i |
|- [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) = [_ ( 1st ` z ) / i ]_ ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) |
48 |
|
fvex |
|- ( 1st ` z ) e. _V |
49 |
|
csbov2g |
|- ( ( 1st ` z ) e. _V -> [_ ( 1st ` z ) / i ]_ ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) = ( R gsum [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) ) |
50 |
48 49
|
ax-mp |
|- [_ ( 1st ` z ) / i ]_ ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) = ( R gsum [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) |
51 |
|
csbmpt2 |
|- ( ( 2nd ` z ) e. _V -> [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) ) |
52 |
44 51
|
ax-mp |
|- [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) |
53 |
52
|
csbeq2i |
|- [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = [_ ( 1st ` z ) / i ]_ ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) |
54 |
|
csbmpt2 |
|- ( ( 1st ` z ) e. _V -> [_ ( 1st ` z ) / i ]_ ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) = ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) |
55 |
48 54
|
ax-mp |
|- [_ ( 1st ` z ) / i ]_ ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) = ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) |
56 |
53 55
|
eqtri |
|- [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) |
57 |
56
|
oveq2i |
|- ( R gsum [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) = ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) |
58 |
47 50 57
|
3eqtrri |
|- ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) = [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) |
59 |
58
|
mpteq2i |
|- ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) ) |
60 |
|
mpompts |
|- ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) ) |
61 |
59 60
|
eqtr4i |
|- ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) |
62 |
61
|
a1i |
|- ( ph -> ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) ) |
63 |
20 43 62
|
3eqtrd |
|- ( ph -> ( A gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) ) |