| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matgsum.a |
|
| 2 |
|
matgsum.b |
|
| 3 |
|
matgsum.z |
|
| 4 |
|
matgsum.i |
|
| 5 |
|
matgsum.j |
|
| 6 |
|
matgsum.r |
|
| 7 |
|
matgsum.f |
|
| 8 |
|
matgsum.w |
|
| 9 |
5
|
mptexd |
|
| 10 |
1
|
ovexi |
|
| 11 |
10
|
a1i |
|
| 12 |
|
ovexd |
|
| 13 |
|
eqid |
|
| 14 |
1 13
|
matbas |
|
| 15 |
4 6 14
|
syl2anc |
|
| 16 |
15
|
eqcomd |
|
| 17 |
1 13
|
matplusg |
|
| 18 |
4 6 17
|
syl2anc |
|
| 19 |
18
|
eqcomd |
|
| 20 |
9 11 12 16 19
|
gsumpropd |
|
| 21 |
|
mpompts |
|
| 22 |
21
|
a1i |
|
| 23 |
22
|
mpteq2dv |
|
| 24 |
23
|
oveq2d |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
|
xpfi |
|
| 28 |
4 4 27
|
syl2anc |
|
| 29 |
7 2
|
eleqtrdi |
|
| 30 |
21
|
eqcomi |
|
| 31 |
30
|
a1i |
|
| 32 |
4 6
|
jca |
|
| 33 |
32
|
adantr |
|
| 34 |
33 14
|
syl |
|
| 35 |
29 31 34
|
3eltr4d |
|
| 36 |
30
|
mpteq2i |
|
| 37 |
3
|
eqcomi |
|
| 38 |
8 36 37
|
3brtr4g |
|
| 39 |
1 13
|
mat0 |
|
| 40 |
4 6 39
|
syl2anc |
|
| 41 |
38 40
|
breqtrrd |
|
| 42 |
13 25 26 28 5 6 35 41
|
frlmgsum |
|
| 43 |
24 42
|
eqtrd |
|
| 44 |
|
fvex |
|
| 45 |
|
csbov2g |
|
| 46 |
44 45
|
ax-mp |
|
| 47 |
46
|
csbeq2i |
|
| 48 |
|
fvex |
|
| 49 |
|
csbov2g |
|
| 50 |
48 49
|
ax-mp |
|
| 51 |
|
csbmpt2 |
|
| 52 |
44 51
|
ax-mp |
|
| 53 |
52
|
csbeq2i |
|
| 54 |
|
csbmpt2 |
|
| 55 |
48 54
|
ax-mp |
|
| 56 |
53 55
|
eqtri |
|
| 57 |
56
|
oveq2i |
|
| 58 |
47 50 57
|
3eqtrri |
|
| 59 |
58
|
mpteq2i |
|
| 60 |
|
mpompts |
|
| 61 |
59 60
|
eqtr4i |
|
| 62 |
61
|
a1i |
|
| 63 |
20 43 62
|
3eqtrd |
|