| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matgsum.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
matgsum.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
matgsum.z |
⊢ 0 = ( 0g ‘ 𝐴 ) |
| 4 |
|
matgsum.i |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 5 |
|
matgsum.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) |
| 6 |
|
matgsum.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
|
matgsum.f |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ∈ 𝐵 ) |
| 8 |
|
matgsum.w |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) finSupp 0 ) |
| 9 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ∈ V ) |
| 10 |
1
|
ovexi |
⊢ 𝐴 ∈ V |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 12 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ∈ V ) |
| 13 |
|
eqid |
⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) |
| 14 |
1 13
|
matbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
| 15 |
4 6 14
|
syl2anc |
⊢ ( 𝜑 → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
| 16 |
15
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 17 |
1 13
|
matplusg |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( +g ‘ 𝐴 ) ) |
| 18 |
4 6 17
|
syl2anc |
⊢ ( 𝜑 → ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( +g ‘ 𝐴 ) ) |
| 19 |
18
|
eqcomd |
⊢ ( 𝜑 → ( +g ‘ 𝐴 ) = ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 20 |
9 11 12 16 19
|
gsumpropd |
⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) ) |
| 21 |
|
mpompts |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) |
| 23 |
22
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) = ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) ) |
| 25 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) |
| 26 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) |
| 27 |
|
xpfi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 28 |
4 4 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 29 |
7 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ∈ ( Base ‘ 𝐴 ) ) |
| 30 |
21
|
eqcomi |
⊢ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) |
| 31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) |
| 32 |
4 6
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 34 |
33 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
| 35 |
29 31 34
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ∈ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 36 |
30
|
mpteq2i |
⊢ ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) = ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) |
| 37 |
3
|
eqcomi |
⊢ ( 0g ‘ 𝐴 ) = 0 |
| 38 |
8 36 37
|
3brtr4g |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
| 39 |
1 13
|
mat0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( 0g ‘ 𝐴 ) ) |
| 40 |
4 6 39
|
syl2anc |
⊢ ( 𝜑 → ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( 0g ‘ 𝐴 ) ) |
| 41 |
38 40
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) finSupp ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 42 |
13 25 26 28 5 6 35 41
|
frlmgsum |
⊢ ( 𝜑 → ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) ) |
| 43 |
24 42
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) ) |
| 44 |
|
fvex |
⊢ ( 2nd ‘ 𝑧 ) ∈ V |
| 45 |
|
csbov2g |
⊢ ( ( 2nd ‘ 𝑧 ) ∈ V → ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
| 46 |
44 45
|
ax-mp |
⊢ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
| 47 |
46
|
csbeq2i |
⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
| 48 |
|
fvex |
⊢ ( 1st ‘ 𝑧 ) ∈ V |
| 49 |
|
csbov2g |
⊢ ( ( 1st ‘ 𝑧 ) ∈ V → ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
| 50 |
48 49
|
ax-mp |
⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
| 51 |
|
csbmpt2 |
⊢ ( ( 2nd ‘ 𝑧 ) ∈ V → ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) |
| 52 |
44 51
|
ax-mp |
⊢ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
| 53 |
52
|
csbeq2i |
⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) = ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
| 54 |
|
csbmpt2 |
⊢ ( ( 1st ‘ 𝑧 ) ∈ V → ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) |
| 55 |
48 54
|
ax-mp |
⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
| 56 |
53 55
|
eqtri |
⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
| 57 |
56
|
oveq2i |
⊢ ( 𝑅 Σg ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) |
| 58 |
47 50 57
|
3eqtrri |
⊢ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) = ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
| 59 |
58
|
mpteq2i |
⊢ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
| 60 |
|
mpompts |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
| 61 |
59 60
|
eqtr4i |
⊢ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
| 62 |
61
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
| 63 |
20 43 62
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |