| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmgsum.y |
|
| 2 |
|
frlmgsum.b |
|
| 3 |
|
frlmgsum.z |
|
| 4 |
|
frlmgsum.i |
|
| 5 |
|
frlmgsum.j |
|
| 6 |
|
frlmgsum.r |
|
| 7 |
|
frlmgsum.f |
|
| 8 |
|
frlmgsum.w |
|
| 9 |
1 2
|
frlmpws |
|
| 10 |
6 4 9
|
syl2anc |
|
| 11 |
10
|
oveq1d |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
ovexd |
|
| 16 |
|
eqid |
|
| 17 |
1 2 16
|
frlmlss |
|
| 18 |
6 4 17
|
syl2anc |
|
| 19 |
12 16
|
lssss |
|
| 20 |
18 19
|
syl |
|
| 21 |
7
|
fmpttd |
|
| 22 |
|
rlmlmod |
|
| 23 |
6 22
|
syl |
|
| 24 |
|
eqid |
|
| 25 |
24
|
pwslmod |
|
| 26 |
23 4 25
|
syl2anc |
|
| 27 |
|
eqid |
|
| 28 |
27 16
|
lss0cl |
|
| 29 |
26 18 28
|
syl2anc |
|
| 30 |
|
lmodcmn |
|
| 31 |
23 30
|
syl |
|
| 32 |
|
cmnmnd |
|
| 33 |
31 32
|
syl |
|
| 34 |
24
|
pwsmnd |
|
| 35 |
33 4 34
|
syl2anc |
|
| 36 |
12 13 27
|
mndlrid |
|
| 37 |
35 36
|
sylan |
|
| 38 |
12 13 14 15 5 20 21 29 37
|
gsumress |
|
| 39 |
|
rlmbas |
|
| 40 |
|
eqid |
|
| 41 |
1 40 2
|
frlmbasf |
|
| 42 |
4 7 41
|
syl2an2r |
|
| 43 |
42
|
fvmptelcdm |
|
| 44 |
43
|
an32s |
|
| 45 |
44
|
anasss |
|
| 46 |
10
|
fveq2d |
|
| 47 |
16
|
lsssubg |
|
| 48 |
26 18 47
|
syl2anc |
|
| 49 |
14 27
|
subg0 |
|
| 50 |
48 49
|
syl |
|
| 51 |
46 50
|
eqtr4d |
|
| 52 |
3 51
|
eqtrid |
|
| 53 |
8 52
|
breqtrd |
|
| 54 |
24 39 27 4 5 31 45 53
|
pwsgsum |
|
| 55 |
5
|
mptexd |
|
| 56 |
|
fvexd |
|
| 57 |
39
|
a1i |
|
| 58 |
|
rlmplusg |
|
| 59 |
58
|
a1i |
|
| 60 |
55 6 56 57 59
|
gsumpropd |
|
| 61 |
60
|
mpteq2dv |
|
| 62 |
54 61
|
eqtr4d |
|
| 63 |
11 38 62
|
3eqtr2d |
|