Metamath Proof Explorer


Theorem csbmpt2

Description: Move substitution into the second part of a maps-to notation. (Contributed by AV, 26-Sep-2019)

Ref Expression
Assertion csbmpt2 AVA/xyYZ=yYA/xZ

Proof

Step Hyp Ref Expression
1 csbmpt12 AVA/xyYZ=yA/xYA/xZ
2 csbconstg AVA/xY=Y
3 2 mpteq1d AVyA/xYA/xZ=yYA/xZ
4 1 3 eqtrd AVA/xyYZ=yYA/xZ