Metamath Proof Explorer


Theorem iunopab

Description: Move indexed union inside an ordered-pair class abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015) Avoid ax-sep , ax-nul , ax-pr . (Revised by SN, 11-Nov-2024)

Ref Expression
Assertion iunopab zAxy|φ=xy|zAφ

Proof

Step Hyp Ref Expression
1 elopabw wVwxy|φxyw=xyφ
2 1 elv wxy|φxyw=xyφ
3 2 rexbii zAwxy|φzAxyw=xyφ
4 rexcom4 zAxyw=xyφxzAyw=xyφ
5 rexcom4 zAyw=xyφyzAw=xyφ
6 r19.42v zAw=xyφw=xyzAφ
7 6 exbii yzAw=xyφyw=xyzAφ
8 5 7 bitri zAyw=xyφyw=xyzAφ
9 8 exbii xzAyw=xyφxyw=xyzAφ
10 4 9 bitri zAxyw=xyφxyw=xyzAφ
11 3 10 bitri zAwxy|φxyw=xyzAφ
12 11 abbii w|zAwxy|φ=w|xyw=xyzAφ
13 df-iun zAxy|φ=w|zAwxy|φ
14 df-opab xy|zAφ=w|xyw=xyzAφ
15 12 13 14 3eqtr4i zAxy|φ=xy|zAφ