Metamath Proof Explorer


Theorem elopabw

Description: Membership in a class abstraction of ordered pairs. Weaker version of elopab with a sethood antecedent, avoiding ax-sep , ax-nul , and ax-pr . Originally a subproof of elopab . (Contributed by SN, 11-Dec-2024)

Ref Expression
Assertion elopabw AVAxy|φxyA=xyφ

Proof

Step Hyp Ref Expression
1 eqeq1 z=Az=xyA=xy
2 1 anbi1d z=Az=xyφA=xyφ
3 2 2exbidv z=Axyz=xyφxyA=xyφ
4 df-opab xy|φ=z|xyz=xyφ
5 3 4 elab2g AVAxy|φxyA=xyφ