Metamath Proof Explorer


Theorem csbmpt12

Description: Move substitution into a maps-to notation. (Contributed by AV, 26-Sep-2019)

Ref Expression
Assertion csbmpt12 AVA/xyYZ=yA/xYA/xZ

Proof

Step Hyp Ref Expression
1 csbopab A/xyz|yYz=Z=yz|[˙A/x]˙yYz=Z
2 sbcan [˙A/x]˙yYz=Z[˙A/x]˙yY[˙A/x]˙z=Z
3 sbcel12 [˙A/x]˙yYA/xyA/xY
4 csbconstg AVA/xy=y
5 4 eleq1d AVA/xyA/xYyA/xY
6 3 5 bitrid AV[˙A/x]˙yYyA/xY
7 sbceq2g AV[˙A/x]˙z=Zz=A/xZ
8 6 7 anbi12d AV[˙A/x]˙yY[˙A/x]˙z=ZyA/xYz=A/xZ
9 2 8 bitrid AV[˙A/x]˙yYz=ZyA/xYz=A/xZ
10 9 opabbidv AVyz|[˙A/x]˙yYz=Z=yz|yA/xYz=A/xZ
11 1 10 eqtrid AVA/xyz|yYz=Z=yz|yA/xYz=A/xZ
12 df-mpt yYZ=yz|yYz=Z
13 12 csbeq2i A/xyYZ=A/xyz|yYz=Z
14 df-mpt yA/xYA/xZ=yz|yA/xYz=A/xZ
15 11 13 14 3eqtr4g AVA/xyYZ=yA/xYA/xZ