Step |
Hyp |
Ref |
Expression |
1 |
|
csbopab |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) } = { 〈 𝑦 , 𝑧 〉 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) } |
2 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑌 ∧ [ 𝐴 / 𝑥 ] 𝑧 = 𝑍 ) ) |
3 |
|
sbcel12 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑌 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ) |
4 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑦 = 𝑦 ) |
5 |
4
|
eleq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ) ) |
6 |
3 5
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑌 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ) ) |
7 |
|
sbceq2g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 = 𝑍 ↔ 𝑧 = ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ) |
8 |
6 7
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑌 ∧ [ 𝐴 / 𝑥 ] 𝑧 = 𝑍 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 = ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ) ) |
9 |
2 8
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 = ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ) ) |
10 |
9
|
opabbidv |
⊢ ( 𝐴 ∈ 𝑉 → { 〈 𝑦 , 𝑧 〉 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 = ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) } ) |
11 |
1 10
|
eqtrid |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 = ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) } ) |
12 |
|
df-mpt |
⊢ ( 𝑦 ∈ 𝑌 ↦ 𝑍 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) } |
13 |
12
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝑦 ∈ 𝑌 ↦ 𝑍 ) = ⦋ 𝐴 / 𝑥 ⦌ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) } |
14 |
|
df-mpt |
⊢ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ↦ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 = ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) } |
15 |
11 13 14
|
3eqtr4g |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝑦 ∈ 𝑌 ↦ 𝑍 ) = ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ↦ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ) |