Metamath Proof Explorer


Theorem csbopab

Description: Move substitution into a class abstraction. Version of csbopabgALT without a sethood antecedent but depending on more axioms. (Contributed by NM, 6-Aug-2007) (Revised by NM, 23-Aug-2018)

Ref Expression
Assertion csbopab A/xyz|φ=yz|[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 csbeq1 w=Aw/xyz|φ=A/xyz|φ
2 dfsbcq2 w=Awxφ[˙A/x]˙φ
3 2 opabbidv w=Ayz|wxφ=yz|[˙A/x]˙φ
4 1 3 eqeq12d w=Aw/xyz|φ=yz|wxφA/xyz|φ=yz|[˙A/x]˙φ
5 vex wV
6 nfs1v xwxφ
7 6 nfopab _xyz|wxφ
8 sbequ12 x=wφwxφ
9 8 opabbidv x=wyz|φ=yz|wxφ
10 5 7 9 csbief w/xyz|φ=yz|wxφ
11 4 10 vtoclg AVA/xyz|φ=yz|[˙A/x]˙φ
12 csbprc ¬AVA/xyz|φ=
13 sbcex [˙A/x]˙φAV
14 13 con3i ¬AV¬[˙A/x]˙φ
15 14 nexdv ¬AV¬z[˙A/x]˙φ
16 15 nexdv ¬AV¬yz[˙A/x]˙φ
17 opabn0 yz|[˙A/x]˙φyz[˙A/x]˙φ
18 17 necon1bbii ¬yz[˙A/x]˙φyz|[˙A/x]˙φ=
19 16 18 sylib ¬AVyz|[˙A/x]˙φ=
20 12 19 eqtr4d ¬AVA/xyz|φ=yz|[˙A/x]˙φ
21 11 20 pm2.61i A/xyz|φ=yz|[˙A/x]˙φ