| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmatmul.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | decpmatmul.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | decpmatmul.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | decpmatmul.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 5 |  | eqidd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) ) )  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) ) ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑥  =  𝑖  →  ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 )  =  ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑦  =  𝑗  →  ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 )  =  ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) | 
						
							| 8 | 6 7 | oveqan12d | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 )  →  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) )  =  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) | 
						
							| 9 | 8 | mpteq2dv | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 )  →  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) )  =  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 )  →  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) )  =  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) ) ) | 
						
							| 11 | 10 | mpteq2dv | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 )  →  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) ) ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) ) ) ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 ) )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) ) ) ) ) | 
						
							| 14 |  | simprl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 15 |  | simprr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑗  ∈  𝑁 ) | 
						
							| 16 |  | ovexd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) ) ) )  ∈  V ) | 
						
							| 17 | 5 13 14 15 16 | ovmpod | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) ) ) 𝑗 )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) ) ) ) ) | 
						
							| 18 | 2 3 | matrcl | ⊢ ( 𝑈  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  V ) ) | 
						
							| 19 | 18 | simpld | ⊢ ( 𝑈  ∈  𝐵  →  𝑁  ∈  Fin ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  𝑁  ∈  Fin ) | 
						
							| 21 | 20 | anim2i | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin ) ) | 
						
							| 22 | 21 | ancomd | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 23 | 22 | 3adant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 24 |  | eqid | ⊢ ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) | 
						
							| 25 | 4 24 | matmulr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 26 | 23 25 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( .r ‘ 𝐴 )  =  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) ) | 
						
							| 30 | 29 | oveqd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) )  =  ( ( 𝑈  decompPMat  𝑘 ) ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 32 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 33 |  | simp1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑅  ∈  Ring ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝑅  ∈  Ring ) | 
						
							| 36 | 23 | simpld | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  𝑁  ∈  Fin ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑁  ∈  Fin ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝑁  ∈  Fin ) | 
						
							| 39 |  | simpl2l | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑈  ∈  𝐵 ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝑈  ∈  𝐵 ) | 
						
							| 41 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝐾 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 43 | 35 40 42 | 3jca | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑈  ∈  𝐵  ∧  𝑘  ∈  ℕ0 ) ) | 
						
							| 44 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 45 | 1 2 3 4 44 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑈  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 46 | 43 45 | syl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑈  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 47 | 4 31 44 | matbas2i | ⊢ ( ( 𝑈  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 )  →  ( 𝑈  decompPMat  𝑘 )  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑈  decompPMat  𝑘 )  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 49 |  | simpl2r | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑊  ∈  𝐵 ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝑊  ∈  𝐵 ) | 
						
							| 51 |  | fznn0sub | ⊢ ( 𝑘  ∈  ( 0 ... 𝐾 )  →  ( 𝐾  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝐾  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 53 | 35 50 52 | 3jca | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑊  ∈  𝐵  ∧  ( 𝐾  −  𝑘 )  ∈  ℕ0 ) ) | 
						
							| 54 | 1 2 3 4 44 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑊  ∈  𝐵  ∧  ( 𝐾  −  𝑘 )  ∈  ℕ0 )  →  ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 55 | 53 54 | syl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 56 | 4 31 44 | matbas2i | ⊢ ( ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) )  ∈  ( Base ‘ 𝐴 )  →  ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) )  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) )  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 58 | 24 31 32 35 38 38 38 48 57 | mamuval | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝑈  decompPMat  𝑘 ) ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) )  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) ) | 
						
							| 59 | 30 58 | eqtrd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) )  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) ) | 
						
							| 60 | 59 | mpteq2dva | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) ) ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) )  =  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) ) ) ) | 
						
							| 62 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 63 |  | ovexd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 0 ... 𝐾 )  ∈  V ) | 
						
							| 64 |  | ringcmn | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  CMnd ) | 
						
							| 65 | 33 64 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  𝑅  ∈  CMnd ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑅  ∈  CMnd ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝑅  ∈  CMnd ) | 
						
							| 68 | 67 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  𝑅  ∈  CMnd ) | 
						
							| 69 | 38 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  𝑁  ∈  Fin ) | 
						
							| 70 | 35 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  ∧  𝑡  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 72 |  | simpl2 | ⊢ ( ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  ∧  𝑡  ∈  𝑁 )  →  𝑥  ∈  𝑁 ) | 
						
							| 73 |  | simpr | ⊢ ( ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  ∧  𝑡  ∈  𝑁 )  →  𝑡  ∈  𝑁 ) | 
						
							| 74 | 43 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  ( 𝑅  ∈  Ring  ∧  𝑈  ∈  𝐵  ∧  𝑘  ∈  ℕ0 ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  ∧  𝑡  ∈  𝑁 )  →  ( 𝑅  ∈  Ring  ∧  𝑈  ∈  𝐵  ∧  𝑘  ∈  ℕ0 ) ) | 
						
							| 76 | 75 45 | syl | ⊢ ( ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  ∧  𝑡  ∈  𝑁 )  →  ( 𝑈  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 77 | 4 31 44 72 73 76 | matecld | ⊢ ( ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  ∧  𝑡  ∈  𝑁 )  →  ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 78 |  | simpl3 | ⊢ ( ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  ∧  𝑡  ∈  𝑁 )  →  𝑦  ∈  𝑁 ) | 
						
							| 79 | 55 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  ∧  𝑡  ∈  𝑁 )  →  ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 81 | 4 31 44 73 78 80 | matecld | ⊢ ( ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  ∧  𝑡  ∈  𝑁 )  →  ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 82 | 31 32 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 83 | 71 77 81 82 | syl3anc | ⊢ ( ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  ∧  𝑡  ∈  𝑁 )  →  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 84 | 83 | ralrimiva | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  ∀ 𝑡  ∈  𝑁 ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 85 | 31 68 69 84 | gsummptcl | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 86 | 4 31 44 38 35 85 | matbas2d | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 87 |  | eqid | ⊢ ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) ) | 
						
							| 88 |  | fzfid | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 0 ... 𝐾 )  ∈  Fin ) | 
						
							| 89 |  | simpl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  V )  →  𝑁  ∈  Fin ) | 
						
							| 90 | 89 89 | jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  V )  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 91 | 18 90 | syl | ⊢ ( 𝑈  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 93 | 92 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 96 |  | mpoexga | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) )  ∈  V ) | 
						
							| 97 | 95 96 | syl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) )  ∈  V ) | 
						
							| 98 |  | fvexd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 0g ‘ 𝐴 )  ∈  V ) | 
						
							| 99 | 87 88 97 98 | fsuppmptdm | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 100 | 4 44 62 37 63 34 86 99 | matgsum | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) ) )  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) ) ) ) | 
						
							| 101 | 61 100 | eqtrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) )  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) ) ) ) | 
						
							| 102 | 101 | oveqd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) ) 𝑗 )  =  ( 𝑖 ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑥 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑦 ) ) ) ) ) ) ) 𝑗 ) ) | 
						
							| 103 |  | simpl2 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 ) ) | 
						
							| 104 |  | simpl3 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 105 | 1 2 3 | decpmatmullem | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 ) 𝑗 )  =  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) ) ) ) ) ) ) | 
						
							| 106 | 37 34 103 14 15 104 105 | syl213anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 ) 𝑗 )  =  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) ) ) ) ) ) ) | 
						
							| 107 |  | simpll1 | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 108 |  | simplrl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 109 |  | simprl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  𝑡  ∈  𝑁 ) | 
						
							| 110 | 3 | eleq2i | ⊢ ( 𝑈  ∈  𝐵  ↔  𝑈  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 111 | 110 | biimpi | ⊢ ( 𝑈  ∈  𝐵  →  𝑈  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  𝑈  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 113 | 112 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  𝑈  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 114 | 113 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑈  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  𝑈  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 116 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 117 | 2 116 | matecl | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑡  ∈  𝑁  ∧  𝑈  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑖 𝑈 𝑡 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 118 | 108 109 115 117 | syl3anc | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  ( 𝑖 𝑈 𝑡 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 119 | 41 | ad2antll | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 120 |  | eqid | ⊢ ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) )  =  ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) | 
						
							| 121 | 120 116 1 31 | coe1fvalcl | ⊢ ( ( ( 𝑖 𝑈 𝑡 )  ∈  ( Base ‘ 𝑃 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 122 | 118 119 121 | syl2anc | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 123 |  | simplrr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  𝑗  ∈  𝑁 ) | 
						
							| 124 | 49 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  𝑊  ∈  𝐵 ) | 
						
							| 125 | 2 116 3 109 123 124 | matecld | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  ( 𝑡 𝑊 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 126 | 51 | ad2antll | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  ( 𝐾  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 127 |  | eqid | ⊢ ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) )  =  ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) | 
						
							| 128 | 127 116 1 31 | coe1fvalcl | ⊢ ( ( ( 𝑡 𝑊 𝑗 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝐾  −  𝑘 )  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 129 | 125 126 128 | syl2anc | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 130 | 31 32 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 131 | 107 122 129 130 | syl3anc | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑘  ∈  ( 0 ... 𝐾 ) ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 132 | 31 66 37 88 131 | gsumcom3fi | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) ) ) ) ) ) ) | 
						
							| 133 | 14 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 134 | 133 | anim1i | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑡  ∈  𝑁 )  →  ( 𝑖  ∈  𝑁  ∧  𝑡  ∈  𝑁 ) ) | 
						
							| 135 | 1 2 3 | decpmate | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑈  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑡  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 )  =  ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ) | 
						
							| 136 | 43 134 135 | syl2an2r | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑡  ∈  𝑁 )  →  ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 )  =  ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ) | 
						
							| 137 |  | simplrr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝑗  ∈  𝑁 ) | 
						
							| 138 | 137 | anim1ci | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑡  ∈  𝑁 )  →  ( 𝑡  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) ) | 
						
							| 139 | 1 2 3 | decpmate | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑊  ∈  𝐵  ∧  ( 𝐾  −  𝑘 )  ∈  ℕ0 )  ∧  ( 𝑡  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 )  =  ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) ) | 
						
							| 140 | 53 138 139 | syl2an2r | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑡  ∈  𝑁 )  →  ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 )  =  ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) ) | 
						
							| 141 | 136 140 | oveq12d | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑡  ∈  𝑁 )  →  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) )  =  ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) ) ) | 
						
							| 142 | 141 | eqcomd | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  ∧  𝑡  ∈  𝑁 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) )  =  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) | 
						
							| 143 | 142 | mpteq2dva | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑡  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) ) )  =  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) ) | 
						
							| 144 | 143 | oveq2d | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) ) ) | 
						
							| 145 | 144 | mpteq2dva | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) ) ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) ) ) ) | 
						
							| 146 | 145 | oveq2d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾  −  𝑘 ) ) ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) ) ) ) ) | 
						
							| 147 | 106 132 146 | 3eqtrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 ) 𝑗 )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( 𝑅  Σg  ( 𝑡  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑈  decompPMat  𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) 𝑗 ) ) ) ) ) ) ) | 
						
							| 148 | 17 102 147 | 3eqtr4rd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 ) 𝑗 )  =  ( 𝑖 ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) ) 𝑗 ) ) | 
						
							| 149 | 148 | ralrimivva | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 ) 𝑗 )  =  ( 𝑖 ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) ) 𝑗 ) ) | 
						
							| 150 | 1 2 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring ) | 
						
							| 151 | 22 150 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 ) )  →  𝐶  ∈  Ring ) | 
						
							| 152 |  | simprl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 ) )  →  𝑈  ∈  𝐵 ) | 
						
							| 153 |  | simprr | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 ) )  →  𝑊  ∈  𝐵 ) | 
						
							| 154 |  | eqid | ⊢ ( .r ‘ 𝐶 )  =  ( .r ‘ 𝐶 ) | 
						
							| 155 | 3 154 | ringcl | ⊢ ( ( 𝐶  ∈  Ring  ∧  𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  ∈  𝐵 ) | 
						
							| 156 | 151 152 153 155 | syl3anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 ) )  →  ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  ∈  𝐵 ) | 
						
							| 157 | 156 | 3adant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  ∈  𝐵 ) | 
						
							| 158 | 1 2 3 4 44 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 159 | 157 158 | syld3an2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 160 | 4 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 161 | 23 160 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  𝐴  ∈  Ring ) | 
						
							| 162 |  | ringcmn | ⊢ ( 𝐴  ∈  Ring  →  𝐴  ∈  CMnd ) | 
						
							| 163 | 161 162 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  𝐴  ∈  CMnd ) | 
						
							| 164 |  | fzfid | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ( 0 ... 𝐾 )  ∈  Fin ) | 
						
							| 165 | 161 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝐴  ∈  Ring ) | 
						
							| 166 | 33 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝑅  ∈  Ring ) | 
						
							| 167 |  | simpl2l | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝑈  ∈  𝐵 ) | 
						
							| 168 | 41 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 169 | 166 167 168 | 3jca | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑈  ∈  𝐵  ∧  𝑘  ∈  ℕ0 ) ) | 
						
							| 170 | 169 45 | syl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑈  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 171 |  | simpl2r | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  𝑊  ∈  𝐵 ) | 
						
							| 172 | 51 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝐾  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 173 | 166 171 172 | 3jca | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑊  ∈  𝐵  ∧  ( 𝐾  −  𝑘 )  ∈  ℕ0 ) ) | 
						
							| 174 | 173 54 | syl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 175 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 176 | 44 175 | ringcl | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑈  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 )  ∧  ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) )  ∈  ( Base ‘ 𝐴 ) )  →  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 177 | 165 170 174 176 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝐾 ) )  →  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 178 | 177 | ralrimiva | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ∀ 𝑘  ∈  ( 0 ... 𝐾 ) ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 179 | 44 163 164 178 | gsummptcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 180 | 4 44 | eqmat | ⊢ ( ( ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 )  ∈  ( Base ‘ 𝐴 )  ∧  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) )  ∈  ( Base ‘ 𝐴 ) )  →  ( ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 )  =  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 ) 𝑗 )  =  ( 𝑖 ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) ) 𝑗 ) ) ) | 
						
							| 181 | 159 179 180 | syl2anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 )  =  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 ) 𝑗 )  =  ( 𝑖 ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) ) 𝑗 ) ) ) | 
						
							| 182 | 149 181 | mpbird | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑈  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 )  decompPMat  𝐾 )  =  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝐾 )  ↦  ( ( 𝑈  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊  decompPMat  ( 𝐾  −  𝑘 ) ) ) ) ) ) |