| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1mul.s |
|- Y = ( Poly1 ` R ) |
| 2 |
|
coe1mul.t |
|- .xb = ( .r ` Y ) |
| 3 |
|
coe1mul.u |
|- .x. = ( .r ` R ) |
| 4 |
|
coe1mul.b |
|- B = ( Base ` Y ) |
| 5 |
|
id |
|- ( R e. Ring -> R e. Ring ) |
| 6 |
1 4
|
ply1bascl |
|- ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) ) |
| 7 |
1 4
|
ply1bascl |
|- ( G e. B -> G e. ( Base ` ( PwSer1 ` R ) ) ) |
| 8 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
| 9 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
| 10 |
|
eqid |
|- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
| 11 |
1 9 2
|
ply1mulr |
|- .xb = ( .r ` ( 1o mPoly R ) ) |
| 12 |
9 10 11
|
mplmulr |
|- .xb = ( .r ` ( 1o mPwSer R ) ) |
| 13 |
|
eqid |
|- ( .r ` ( PwSer1 ` R ) ) = ( .r ` ( PwSer1 ` R ) ) |
| 14 |
8 10 13
|
psr1mulr |
|- ( .r ` ( PwSer1 ` R ) ) = ( .r ` ( 1o mPwSer R ) ) |
| 15 |
12 14
|
eqtr4i |
|- .xb = ( .r ` ( PwSer1 ` R ) ) |
| 16 |
|
eqid |
|- ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) |
| 17 |
8 15 3 16
|
coe1mul2 |
|- ( ( R e. Ring /\ F e. ( Base ` ( PwSer1 ` R ) ) /\ G e. ( Base ` ( PwSer1 ` R ) ) ) -> ( coe1 ` ( F .xb G ) ) = ( k e. NN0 |-> ( R gsum ( x e. ( 0 ... k ) |-> ( ( ( coe1 ` F ) ` x ) .x. ( ( coe1 ` G ) ` ( k - x ) ) ) ) ) ) ) |
| 18 |
5 6 7 17
|
syl3an |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .xb G ) ) = ( k e. NN0 |-> ( R gsum ( x e. ( 0 ... k ) |-> ( ( ( coe1 ` F ) ` x ) .x. ( ( coe1 ` G ) ` ( k - x ) ) ) ) ) ) ) |