Metamath Proof Explorer


Theorem coe1mul

Description: The coefficient vector of multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses coe1mul.s 𝑌 = ( Poly1𝑅 )
coe1mul.t = ( .r𝑌 )
coe1mul.u · = ( .r𝑅 )
coe1mul.b 𝐵 = ( Base ‘ 𝑌 )
Assertion coe1mul ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( coe1 ‘ ( 𝐹 𝐺 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑥 ) · ( ( coe1𝐺 ) ‘ ( 𝑘𝑥 ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 coe1mul.s 𝑌 = ( Poly1𝑅 )
2 coe1mul.t = ( .r𝑌 )
3 coe1mul.u · = ( .r𝑅 )
4 coe1mul.b 𝐵 = ( Base ‘ 𝑌 )
5 id ( 𝑅 ∈ Ring → 𝑅 ∈ Ring )
6 1 4 ply1bascl ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( PwSer1𝑅 ) ) )
7 1 4 ply1bascl ( 𝐺𝐵𝐺 ∈ ( Base ‘ ( PwSer1𝑅 ) ) )
8 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
9 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
10 eqid ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 )
11 1 9 2 ply1mulr = ( .r ‘ ( 1o mPoly 𝑅 ) )
12 9 10 11 mplmulr = ( .r ‘ ( 1o mPwSer 𝑅 ) )
13 eqid ( .r ‘ ( PwSer1𝑅 ) ) = ( .r ‘ ( PwSer1𝑅 ) )
14 8 10 13 psr1mulr ( .r ‘ ( PwSer1𝑅 ) ) = ( .r ‘ ( 1o mPwSer 𝑅 ) )
15 12 14 eqtr4i = ( .r ‘ ( PwSer1𝑅 ) )
16 eqid ( Base ‘ ( PwSer1𝑅 ) ) = ( Base ‘ ( PwSer1𝑅 ) )
17 8 15 3 16 coe1mul2 ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( Base ‘ ( PwSer1𝑅 ) ) ∧ 𝐺 ∈ ( Base ‘ ( PwSer1𝑅 ) ) ) → ( coe1 ‘ ( 𝐹 𝐺 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑥 ) · ( ( coe1𝐺 ) ‘ ( 𝑘𝑥 ) ) ) ) ) ) )
18 5 6 7 17 syl3an ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( coe1 ‘ ( 𝐹 𝐺 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑥 ) · ( ( coe1𝐺 ) ‘ ( 𝑘𝑥 ) ) ) ) ) ) )