Step |
Hyp |
Ref |
Expression |
1 |
|
coe1mul2.s |
⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) |
2 |
|
coe1mul2.t |
⊢ ∙ = ( .r ‘ 𝑆 ) |
3 |
|
coe1mul2.u |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
coe1mul2.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
5 |
|
fconst6g |
⊢ ( 𝑘 ∈ ℕ0 → ( 1o × { 𝑘 } ) : 1o ⟶ ℕ0 ) |
6 |
|
nn0ex |
⊢ ℕ0 ∈ V |
7 |
|
1on |
⊢ 1o ∈ On |
8 |
7
|
elexi |
⊢ 1o ∈ V |
9 |
6 8
|
elmap |
⊢ ( ( 1o × { 𝑘 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 𝑘 } ) : 1o ⟶ ℕ0 ) |
10 |
5 9
|
sylibr |
⊢ ( 𝑘 ∈ ℕ0 → ( 1o × { 𝑘 } ) ∈ ( ℕ0 ↑m 1o ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 1o × { 𝑘 } ) ∈ ( ℕ0 ↑m 1o ) ) |
12 |
|
eqidd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) ) |
13 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
14 |
1 4 13
|
psr1bas2 |
⊢ 𝐵 = ( Base ‘ ( 1o mPwSer 𝑅 ) ) |
15 |
1 13 2
|
psr1mulr |
⊢ ∙ = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
16 |
|
psr1baslem |
⊢ ( ℕ0 ↑m 1o ) = { 𝑎 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } |
17 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 ∈ 𝐵 ) |
18 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
19 |
13 14 3 15 16 17 18
|
psrmulfval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) = ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) ) |
20 |
|
breq2 |
⊢ ( 𝑏 = ( 1o × { 𝑘 } ) → ( 𝑑 ∘r ≤ 𝑏 ↔ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) ) ) |
21 |
20
|
rabbidv |
⊢ ( 𝑏 = ( 1o × { 𝑘 } ) → { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ 𝑏 } = { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) |
22 |
|
fvoveq1 |
⊢ ( 𝑏 = ( 1o × { 𝑘 } ) → ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) = ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑏 = ( 1o × { 𝑘 } ) → ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) = ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) |
24 |
21 23
|
mpteq12dv |
⊢ ( 𝑏 = ( 1o × { 𝑘 } ) → ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) |
25 |
24
|
oveq2d |
⊢ ( 𝑏 = ( 1o × { 𝑘 } ) → ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) ) |
26 |
11 12 19 25
|
fmptco |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 ∙ 𝐺 ) ∘ ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) ) ) |
27 |
1
|
psr1ring |
⊢ ( 𝑅 ∈ Ring → 𝑆 ∈ Ring ) |
28 |
4 2
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) ∈ 𝐵 ) |
29 |
27 28
|
syl3an1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) ∈ 𝐵 ) |
30 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) |
31 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) |
32 |
30 4 1 31
|
coe1fval3 |
⊢ ( ( 𝐹 ∙ 𝐺 ) ∈ 𝐵 → ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( ( 𝐹 ∙ 𝐺 ) ∘ ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) ) ) |
33 |
29 32
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( ( 𝐹 ∙ 𝐺 ) ∘ ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) ) ) |
34 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
35 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
36 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
37 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
38 |
36 37
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ CMnd ) |
39 |
|
fzfi |
⊢ ( 0 ... 𝑘 ) ∈ Fin |
40 |
39
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
41 |
|
simpll1 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → 𝑅 ∈ Ring ) |
42 |
|
simpll2 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → 𝐹 ∈ 𝐵 ) |
43 |
|
eqid |
⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) |
44 |
43 4 1 34
|
coe1f2 |
⊢ ( 𝐹 ∈ 𝐵 → ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
45 |
42 44
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
46 |
|
elfznn0 |
⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) → 𝑥 ∈ ℕ0 ) |
47 |
46
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → 𝑥 ∈ ℕ0 ) |
48 |
45 47
|
ffvelrnd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
49 |
|
simpll3 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → 𝐺 ∈ 𝐵 ) |
50 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
51 |
50 4 1 34
|
coe1f2 |
⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
52 |
49 51
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
53 |
|
fznn0sub |
⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) → ( 𝑘 − 𝑥 ) ∈ ℕ0 ) |
54 |
53
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − 𝑥 ) ∈ ℕ0 ) |
55 |
52 54
|
ffvelrnd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
56 |
34 3
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
57 |
41 48 55 56
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
58 |
57
|
fmpttd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) : ( 0 ... 𝑘 ) ⟶ ( Base ‘ 𝑅 ) ) |
59 |
39
|
elexi |
⊢ ( 0 ... 𝑘 ) ∈ V |
60 |
59
|
mptex |
⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∈ V |
61 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) |
62 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
63 |
60 61 62
|
3pm3.2i |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) |
64 |
|
suppssdm |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ dom ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) |
65 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) |
66 |
65
|
dmmptss |
⊢ dom ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ⊆ ( 0 ... 𝑘 ) |
67 |
64 66
|
sstri |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 0 ... 𝑘 ) |
68 |
39 67
|
pm3.2i |
⊢ ( ( 0 ... 𝑘 ) ∈ Fin ∧ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 0 ... 𝑘 ) ) |
69 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( ( 0 ... 𝑘 ) ∈ Fin ∧ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 0 ... 𝑘 ) ) ) → ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
70 |
63 68 69
|
mp2an |
⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) |
71 |
70
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
72 |
|
eqid |
⊢ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } = { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } |
73 |
72
|
coe1mul2lem2 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) : { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } –1-1-onto→ ( 0 ... 𝑘 ) ) |
74 |
73
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) : { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } –1-1-onto→ ( 0 ... 𝑘 ) ) |
75 |
34 35 38 40 58 71 74
|
gsumf1o |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) ) ) ) |
76 |
|
breq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) ↔ 𝑐 ∘r ≤ ( 1o × { 𝑘 } ) ) ) |
77 |
76
|
elrab |
⊢ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↔ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ∧ 𝑐 ∘r ≤ ( 1o × { 𝑘 } ) ) ) |
78 |
77
|
simprbi |
⊢ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } → 𝑐 ∘r ≤ ( 1o × { 𝑘 } ) ) |
79 |
78
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝑐 ∘r ≤ ( 1o × { 𝑘 } ) ) |
80 |
|
simplr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝑘 ∈ ℕ0 ) |
81 |
|
elrabi |
⊢ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } → 𝑐 ∈ ( ℕ0 ↑m 1o ) ) |
82 |
81
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝑐 ∈ ( ℕ0 ↑m 1o ) ) |
83 |
|
coe1mul2lem1 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑐 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑐 ∘r ≤ ( 1o × { 𝑘 } ) ↔ ( 𝑐 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) ) ) |
84 |
80 82 83
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝑐 ∘r ≤ ( 1o × { 𝑘 } ) ↔ ( 𝑐 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) ) ) |
85 |
79 84
|
mpbid |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝑐 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) ) |
86 |
|
eqidd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) = ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) ) |
87 |
|
eqidd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) |
88 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑐 ‘ ∅ ) → ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) = ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) ) |
89 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑐 ‘ ∅ ) → ( 𝑘 − 𝑥 ) = ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) |
90 |
89
|
fveq2d |
⊢ ( 𝑥 = ( 𝑐 ‘ ∅ ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) = ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) ) |
91 |
88 90
|
oveq12d |
⊢ ( 𝑥 = ( 𝑐 ‘ ∅ ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) = ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) ) ) |
92 |
85 86 87 91
|
fmptco |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) ) ) ) |
93 |
|
simpll2 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝐹 ∈ 𝐵 ) |
94 |
43
|
fvcoe1 |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝑐 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝐹 ‘ 𝑐 ) = ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) ) |
95 |
93 82 94
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝐹 ‘ 𝑐 ) = ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) ) |
96 |
|
df1o2 |
⊢ 1o = { ∅ } |
97 |
|
0ex |
⊢ ∅ ∈ V |
98 |
96 6 97
|
mapsnconst |
⊢ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) → 𝑐 = ( 1o × { ( 𝑐 ‘ ∅ ) } ) ) |
99 |
82 98
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝑐 = ( 1o × { ( 𝑐 ‘ ∅ ) } ) ) |
100 |
99
|
oveq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) = ( ( 1o × { 𝑘 } ) ∘f − ( 1o × { ( 𝑐 ‘ ∅ ) } ) ) ) |
101 |
7
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 1o ∈ On ) |
102 |
|
vex |
⊢ 𝑘 ∈ V |
103 |
102
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝑘 ∈ V ) |
104 |
|
fvexd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝑐 ‘ ∅ ) ∈ V ) |
105 |
101 103 104
|
ofc12 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( ( 1o × { 𝑘 } ) ∘f − ( 1o × { ( 𝑐 ‘ ∅ ) } ) ) = ( 1o × { ( 𝑘 − ( 𝑐 ‘ ∅ ) ) } ) ) |
106 |
100 105
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) = ( 1o × { ( 𝑘 − ( 𝑐 ‘ ∅ ) ) } ) ) |
107 |
106
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) = ( 𝐺 ‘ ( 1o × { ( 𝑘 − ( 𝑐 ‘ ∅ ) ) } ) ) ) |
108 |
|
simpll3 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝐺 ∈ 𝐵 ) |
109 |
|
fznn0sub |
⊢ ( ( 𝑐 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) → ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ∈ ℕ0 ) |
110 |
85 109
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ∈ ℕ0 ) |
111 |
50
|
coe1fv |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ∈ ℕ0 ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) = ( 𝐺 ‘ ( 1o × { ( 𝑘 − ( 𝑐 ‘ ∅ ) ) } ) ) ) |
112 |
108 110 111
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) = ( 𝐺 ‘ ( 1o × { ( 𝑘 − ( 𝑐 ‘ ∅ ) ) } ) ) ) |
113 |
107 112
|
eqtr4d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) = ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) ) |
114 |
95 113
|
oveq12d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) = ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) ) ) |
115 |
114
|
mpteq2dva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) ) ) ) |
116 |
92 115
|
eqtr4d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) |
117 |
116
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 Σg ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) ) |
118 |
75 117
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) ) |
119 |
118
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) ) ) |
120 |
26 33 119
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) ) ) |