Metamath Proof Explorer


Theorem coe1mul2

Description: The coefficient vector of multiplication in the univariate power series ring. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses coe1mul2.s S = PwSer 1 R
coe1mul2.t ˙ = S
coe1mul2.u · ˙ = R
coe1mul2.b B = Base S
Assertion coe1mul2 R Ring F B G B coe 1 F ˙ G = k 0 R x = 0 k coe 1 F x · ˙ coe 1 G k x

Proof

Step Hyp Ref Expression
1 coe1mul2.s S = PwSer 1 R
2 coe1mul2.t ˙ = S
3 coe1mul2.u · ˙ = R
4 coe1mul2.b B = Base S
5 fconst6g k 0 1 𝑜 × k : 1 𝑜 0
6 nn0ex 0 V
7 1on 1 𝑜 On
8 7 elexi 1 𝑜 V
9 6 8 elmap 1 𝑜 × k 0 1 𝑜 1 𝑜 × k : 1 𝑜 0
10 5 9 sylibr k 0 1 𝑜 × k 0 1 𝑜
11 10 adantl R Ring F B G B k 0 1 𝑜 × k 0 1 𝑜
12 eqidd R Ring F B G B k 0 1 𝑜 × k = k 0 1 𝑜 × k
13 eqid 1 𝑜 mPwSer R = 1 𝑜 mPwSer R
14 1 4 13 psr1bas2 B = Base 1 𝑜 mPwSer R
15 1 13 2 psr1mulr ˙ = 1 𝑜 mPwSer R
16 psr1baslem 0 1 𝑜 = a 0 1 𝑜 | a -1 Fin
17 simp2 R Ring F B G B F B
18 simp3 R Ring F B G B G B
19 13 14 3 15 16 17 18 psrmulfval R Ring F B G B F ˙ G = b 0 1 𝑜 R c d 0 1 𝑜 | d f b F c · ˙ G b f c
20 breq2 b = 1 𝑜 × k d f b d f 1 𝑜 × k
21 20 rabbidv b = 1 𝑜 × k d 0 1 𝑜 | d f b = d 0 1 𝑜 | d f 1 𝑜 × k
22 fvoveq1 b = 1 𝑜 × k G b f c = G 1 𝑜 × k f c
23 22 oveq2d b = 1 𝑜 × k F c · ˙ G b f c = F c · ˙ G 1 𝑜 × k f c
24 21 23 mpteq12dv b = 1 𝑜 × k c d 0 1 𝑜 | d f b F c · ˙ G b f c = c d 0 1 𝑜 | d f 1 𝑜 × k F c · ˙ G 1 𝑜 × k f c
25 24 oveq2d b = 1 𝑜 × k R c d 0 1 𝑜 | d f b F c · ˙ G b f c = R c d 0 1 𝑜 | d f 1 𝑜 × k F c · ˙ G 1 𝑜 × k f c
26 11 12 19 25 fmptco R Ring F B G B F ˙ G k 0 1 𝑜 × k = k 0 R c d 0 1 𝑜 | d f 1 𝑜 × k F c · ˙ G 1 𝑜 × k f c
27 1 psr1ring R Ring S Ring
28 4 2 ringcl S Ring F B G B F ˙ G B
29 27 28 syl3an1 R Ring F B G B F ˙ G B
30 eqid coe 1 F ˙ G = coe 1 F ˙ G
31 eqid k 0 1 𝑜 × k = k 0 1 𝑜 × k
32 30 4 1 31 coe1fval3 F ˙ G B coe 1 F ˙ G = F ˙ G k 0 1 𝑜 × k
33 29 32 syl R Ring F B G B coe 1 F ˙ G = F ˙ G k 0 1 𝑜 × k
34 eqid Base R = Base R
35 eqid 0 R = 0 R
36 simpl1 R Ring F B G B k 0 R Ring
37 ringcmn R Ring R CMnd
38 36 37 syl R Ring F B G B k 0 R CMnd
39 fzfi 0 k Fin
40 39 a1i R Ring F B G B k 0 0 k Fin
41 simpll1 R Ring F B G B k 0 x 0 k R Ring
42 simpll2 R Ring F B G B k 0 x 0 k F B
43 eqid coe 1 F = coe 1 F
44 43 4 1 34 coe1f2 F B coe 1 F : 0 Base R
45 42 44 syl R Ring F B G B k 0 x 0 k coe 1 F : 0 Base R
46 elfznn0 x 0 k x 0
47 46 adantl R Ring F B G B k 0 x 0 k x 0
48 45 47 ffvelrnd R Ring F B G B k 0 x 0 k coe 1 F x Base R
49 simpll3 R Ring F B G B k 0 x 0 k G B
50 eqid coe 1 G = coe 1 G
51 50 4 1 34 coe1f2 G B coe 1 G : 0 Base R
52 49 51 syl R Ring F B G B k 0 x 0 k coe 1 G : 0 Base R
53 fznn0sub x 0 k k x 0
54 53 adantl R Ring F B G B k 0 x 0 k k x 0
55 52 54 ffvelrnd R Ring F B G B k 0 x 0 k coe 1 G k x Base R
56 34 3 ringcl R Ring coe 1 F x Base R coe 1 G k x Base R coe 1 F x · ˙ coe 1 G k x Base R
57 41 48 55 56 syl3anc R Ring F B G B k 0 x 0 k coe 1 F x · ˙ coe 1 G k x Base R
58 57 fmpttd R Ring F B G B k 0 x 0 k coe 1 F x · ˙ coe 1 G k x : 0 k Base R
59 39 elexi 0 k V
60 59 mptex x 0 k coe 1 F x · ˙ coe 1 G k x V
61 funmpt Fun x 0 k coe 1 F x · ˙ coe 1 G k x
62 fvex 0 R V
63 60 61 62 3pm3.2i x 0 k coe 1 F x · ˙ coe 1 G k x V Fun x 0 k coe 1 F x · ˙ coe 1 G k x 0 R V
64 suppssdm x 0 k coe 1 F x · ˙ coe 1 G k x supp 0 R dom x 0 k coe 1 F x · ˙ coe 1 G k x
65 eqid x 0 k coe 1 F x · ˙ coe 1 G k x = x 0 k coe 1 F x · ˙ coe 1 G k x
66 65 dmmptss dom x 0 k coe 1 F x · ˙ coe 1 G k x 0 k
67 64 66 sstri x 0 k coe 1 F x · ˙ coe 1 G k x supp 0 R 0 k
68 39 67 pm3.2i 0 k Fin x 0 k coe 1 F x · ˙ coe 1 G k x supp 0 R 0 k
69 suppssfifsupp x 0 k coe 1 F x · ˙ coe 1 G k x V Fun x 0 k coe 1 F x · ˙ coe 1 G k x 0 R V 0 k Fin x 0 k coe 1 F x · ˙ coe 1 G k x supp 0 R 0 k finSupp 0 R x 0 k coe 1 F x · ˙ coe 1 G k x
70 63 68 69 mp2an finSupp 0 R x 0 k coe 1 F x · ˙ coe 1 G k x
71 70 a1i R Ring F B G B k 0 finSupp 0 R x 0 k coe 1 F x · ˙ coe 1 G k x
72 eqid d 0 1 𝑜 | d f 1 𝑜 × k = d 0 1 𝑜 | d f 1 𝑜 × k
73 72 coe1mul2lem2 k 0 c d 0 1 𝑜 | d f 1 𝑜 × k c : d 0 1 𝑜 | d f 1 𝑜 × k 1-1 onto 0 k
74 73 adantl R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k c : d 0 1 𝑜 | d f 1 𝑜 × k 1-1 onto 0 k
75 34 35 38 40 58 71 74 gsumf1o R Ring F B G B k 0 R x = 0 k coe 1 F x · ˙ coe 1 G k x = R x 0 k coe 1 F x · ˙ coe 1 G k x c d 0 1 𝑜 | d f 1 𝑜 × k c
76 breq1 d = c d f 1 𝑜 × k c f 1 𝑜 × k
77 76 elrab c d 0 1 𝑜 | d f 1 𝑜 × k c 0 1 𝑜 c f 1 𝑜 × k
78 77 simprbi c d 0 1 𝑜 | d f 1 𝑜 × k c f 1 𝑜 × k
79 78 adantl R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k c f 1 𝑜 × k
80 simplr R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k k 0
81 elrabi c d 0 1 𝑜 | d f 1 𝑜 × k c 0 1 𝑜
82 81 adantl R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k c 0 1 𝑜
83 coe1mul2lem1 k 0 c 0 1 𝑜 c f 1 𝑜 × k c 0 k
84 80 82 83 syl2anc R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k c f 1 𝑜 × k c 0 k
85 79 84 mpbid R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k c 0 k
86 eqidd R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k c = c d 0 1 𝑜 | d f 1 𝑜 × k c
87 eqidd R Ring F B G B k 0 x 0 k coe 1 F x · ˙ coe 1 G k x = x 0 k coe 1 F x · ˙ coe 1 G k x
88 fveq2 x = c coe 1 F x = coe 1 F c
89 oveq2 x = c k x = k c
90 89 fveq2d x = c coe 1 G k x = coe 1 G k c
91 88 90 oveq12d x = c coe 1 F x · ˙ coe 1 G k x = coe 1 F c · ˙ coe 1 G k c
92 85 86 87 91 fmptco R Ring F B G B k 0 x 0 k coe 1 F x · ˙ coe 1 G k x c d 0 1 𝑜 | d f 1 𝑜 × k c = c d 0 1 𝑜 | d f 1 𝑜 × k coe 1 F c · ˙ coe 1 G k c
93 simpll2 R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k F B
94 43 fvcoe1 F B c 0 1 𝑜 F c = coe 1 F c
95 93 82 94 syl2anc R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k F c = coe 1 F c
96 df1o2 1 𝑜 =
97 0ex V
98 96 6 97 mapsnconst c 0 1 𝑜 c = 1 𝑜 × c
99 82 98 syl R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k c = 1 𝑜 × c
100 99 oveq2d R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k 1 𝑜 × k f c = 1 𝑜 × k f 1 𝑜 × c
101 7 a1i R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k 1 𝑜 On
102 vex k V
103 102 a1i R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k k V
104 fvexd R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k c V
105 101 103 104 ofc12 R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k 1 𝑜 × k f 1 𝑜 × c = 1 𝑜 × k c
106 100 105 eqtrd R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k 1 𝑜 × k f c = 1 𝑜 × k c
107 106 fveq2d R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k G 1 𝑜 × k f c = G 1 𝑜 × k c
108 simpll3 R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k G B
109 fznn0sub c 0 k k c 0
110 85 109 syl R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k k c 0
111 50 coe1fv G B k c 0 coe 1 G k c = G 1 𝑜 × k c
112 108 110 111 syl2anc R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k coe 1 G k c = G 1 𝑜 × k c
113 107 112 eqtr4d R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k G 1 𝑜 × k f c = coe 1 G k c
114 95 113 oveq12d R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k F c · ˙ G 1 𝑜 × k f c = coe 1 F c · ˙ coe 1 G k c
115 114 mpteq2dva R Ring F B G B k 0 c d 0 1 𝑜 | d f 1 𝑜 × k F c · ˙ G 1 𝑜 × k f c = c d 0 1 𝑜 | d f 1 𝑜 × k coe 1 F c · ˙ coe 1 G k c
116 92 115 eqtr4d R Ring F B G B k 0 x 0 k coe 1 F x · ˙ coe 1 G k x c d 0 1 𝑜 | d f 1 𝑜 × k c = c d 0 1 𝑜 | d f 1 𝑜 × k F c · ˙ G 1 𝑜 × k f c
117 116 oveq2d R Ring F B G B k 0 R x 0 k coe 1 F x · ˙ coe 1 G k x c d 0 1 𝑜 | d f 1 𝑜 × k c = R c d 0 1 𝑜 | d f 1 𝑜 × k F c · ˙ G 1 𝑜 × k f c
118 75 117 eqtrd R Ring F B G B k 0 R x = 0 k coe 1 F x · ˙ coe 1 G k x = R c d 0 1 𝑜 | d f 1 𝑜 × k F c · ˙ G 1 𝑜 × k f c
119 118 mpteq2dva R Ring F B G B k 0 R x = 0 k coe 1 F x · ˙ coe 1 G k x = k 0 R c d 0 1 𝑜 | d f 1 𝑜 × k F c · ˙ G 1 𝑜 × k f c
120 26 33 119 3eqtr4d R Ring F B G B coe 1 F ˙ G = k 0 R x = 0 k coe 1 F x · ˙ coe 1 G k x