Metamath Proof Explorer


Theorem mapsnconst

Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses mapsncnv.s S=X
mapsncnv.b BV
mapsncnv.x XV
Assertion mapsnconst FBSF=S×FX

Proof

Step Hyp Ref Expression
1 mapsncnv.s S=X
2 mapsncnv.b BV
3 mapsncnv.x XV
4 snex XV
5 2 4 elmap FBXF:XB
6 3 fsn2 F:XBFXBF=XFX
7 6 simprbi F:XBF=XFX
8 1 xpeq1i S×FX=X×FX
9 fvex FXV
10 3 9 xpsn X×FX=XFX
11 8 10 eqtr2i XFX=S×FX
12 7 11 eqtrdi F:XBF=S×FX
13 5 12 sylbi FBXF=S×FX
14 1 oveq2i BS=BX
15 13 14 eleq2s FBSF=S×FX