| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapsncnv.s |
⊢ 𝑆 = { 𝑋 } |
| 2 |
|
mapsncnv.b |
⊢ 𝐵 ∈ V |
| 3 |
|
mapsncnv.x |
⊢ 𝑋 ∈ V |
| 4 |
|
snex |
⊢ { 𝑋 } ∈ V |
| 5 |
2 4
|
elmap |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m { 𝑋 } ) ↔ 𝐹 : { 𝑋 } ⟶ 𝐵 ) |
| 6 |
3
|
fsn2 |
⊢ ( 𝐹 : { 𝑋 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
| 7 |
6
|
simprbi |
⊢ ( 𝐹 : { 𝑋 } ⟶ 𝐵 → 𝐹 = { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) |
| 8 |
1
|
xpeq1i |
⊢ ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) = ( { 𝑋 } × { ( 𝐹 ‘ 𝑋 ) } ) |
| 9 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ V |
| 10 |
3 9
|
xpsn |
⊢ ( { 𝑋 } × { ( 𝐹 ‘ 𝑋 ) } ) = { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } |
| 11 |
8 10
|
eqtr2i |
⊢ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) |
| 12 |
7 11
|
eqtrdi |
⊢ ( 𝐹 : { 𝑋 } ⟶ 𝐵 → 𝐹 = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) ) |
| 13 |
5 12
|
sylbi |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m { 𝑋 } ) → 𝐹 = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) ) |
| 14 |
1
|
oveq2i |
⊢ ( 𝐵 ↑m 𝑆 ) = ( 𝐵 ↑m { 𝑋 } ) |
| 15 |
13 14
|
eleq2s |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝑆 ) → 𝐹 = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) ) |