| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapsncnv.s |
⊢ 𝑆 = { 𝑋 } |
| 2 |
|
mapsncnv.b |
⊢ 𝐵 ∈ V |
| 3 |
|
mapsncnv.x |
⊢ 𝑋 ∈ V |
| 4 |
|
mapsncnv.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) |
| 5 |
|
elmapi |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) → 𝑥 : { 𝑋 } ⟶ 𝐵 ) |
| 6 |
3
|
snid |
⊢ 𝑋 ∈ { 𝑋 } |
| 7 |
|
ffvelcdm |
⊢ ( ( 𝑥 : { 𝑋 } ⟶ 𝐵 ∧ 𝑋 ∈ { 𝑋 } ) → ( 𝑥 ‘ 𝑋 ) ∈ 𝐵 ) |
| 8 |
5 6 7
|
sylancl |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) → ( 𝑥 ‘ 𝑋 ) ∈ 𝐵 ) |
| 9 |
|
eqid |
⊢ { 𝑋 } = { 𝑋 } |
| 10 |
9 2 3
|
mapsnconst |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) → 𝑥 = ( { 𝑋 } × { ( 𝑥 ‘ 𝑋 ) } ) ) |
| 11 |
8 10
|
jca |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) → ( ( 𝑥 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { ( 𝑥 ‘ 𝑋 ) } ) ) ) |
| 12 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑥 ‘ 𝑋 ) → ( 𝑦 ∈ 𝐵 ↔ ( 𝑥 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 13 |
|
sneq |
⊢ ( 𝑦 = ( 𝑥 ‘ 𝑋 ) → { 𝑦 } = { ( 𝑥 ‘ 𝑋 ) } ) |
| 14 |
13
|
xpeq2d |
⊢ ( 𝑦 = ( 𝑥 ‘ 𝑋 ) → ( { 𝑋 } × { 𝑦 } ) = ( { 𝑋 } × { ( 𝑥 ‘ 𝑋 ) } ) ) |
| 15 |
14
|
eqeq2d |
⊢ ( 𝑦 = ( 𝑥 ‘ 𝑋 ) → ( 𝑥 = ( { 𝑋 } × { 𝑦 } ) ↔ 𝑥 = ( { 𝑋 } × { ( 𝑥 ‘ 𝑋 ) } ) ) ) |
| 16 |
12 15
|
anbi12d |
⊢ ( 𝑦 = ( 𝑥 ‘ 𝑋 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) ↔ ( ( 𝑥 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { ( 𝑥 ‘ 𝑋 ) } ) ) ) ) |
| 17 |
11 16
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) → ( 𝑦 = ( 𝑥 ‘ 𝑋 ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) ) ) |
| 18 |
17
|
imp |
⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) ) |
| 19 |
|
fconst6g |
⊢ ( 𝑦 ∈ 𝐵 → ( { 𝑋 } × { 𝑦 } ) : { 𝑋 } ⟶ 𝐵 ) |
| 20 |
|
snex |
⊢ { 𝑋 } ∈ V |
| 21 |
2 20
|
elmap |
⊢ ( ( { 𝑋 } × { 𝑦 } ) ∈ ( 𝐵 ↑m { 𝑋 } ) ↔ ( { 𝑋 } × { 𝑦 } ) : { 𝑋 } ⟶ 𝐵 ) |
| 22 |
19 21
|
sylibr |
⊢ ( 𝑦 ∈ 𝐵 → ( { 𝑋 } × { 𝑦 } ) ∈ ( 𝐵 ↑m { 𝑋 } ) ) |
| 23 |
|
vex |
⊢ 𝑦 ∈ V |
| 24 |
23
|
fvconst2 |
⊢ ( 𝑋 ∈ { 𝑋 } → ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) = 𝑦 ) |
| 25 |
6 24
|
mp1i |
⊢ ( 𝑦 ∈ 𝐵 → ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) = 𝑦 ) |
| 26 |
25
|
eqcomd |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 = ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) ) |
| 27 |
22 26
|
jca |
⊢ ( 𝑦 ∈ 𝐵 → ( ( { 𝑋 } × { 𝑦 } ) ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) ) ) |
| 28 |
|
eleq1 |
⊢ ( 𝑥 = ( { 𝑋 } × { 𝑦 } ) → ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ↔ ( { 𝑋 } × { 𝑦 } ) ∈ ( 𝐵 ↑m { 𝑋 } ) ) ) |
| 29 |
|
fveq1 |
⊢ ( 𝑥 = ( { 𝑋 } × { 𝑦 } ) → ( 𝑥 ‘ 𝑋 ) = ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) ) |
| 30 |
29
|
eqeq2d |
⊢ ( 𝑥 = ( { 𝑋 } × { 𝑦 } ) → ( 𝑦 = ( 𝑥 ‘ 𝑋 ) ↔ 𝑦 = ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) ) ) |
| 31 |
28 30
|
anbi12d |
⊢ ( 𝑥 = ( { 𝑋 } × { 𝑦 } ) → ( ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ↔ ( ( { 𝑋 } × { 𝑦 } ) ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) ) ) ) |
| 32 |
27 31
|
syl5ibrcom |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝑥 = ( { 𝑋 } × { 𝑦 } ) → ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ) ) |
| 33 |
32
|
imp |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) → ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ) |
| 34 |
18 33
|
impbii |
⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) ) |
| 35 |
1
|
oveq2i |
⊢ ( 𝐵 ↑m 𝑆 ) = ( 𝐵 ↑m { 𝑋 } ) |
| 36 |
35
|
eleq2i |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↔ 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ) |
| 37 |
36
|
anbi1i |
⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ↔ ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ) |
| 38 |
1
|
xpeq1i |
⊢ ( 𝑆 × { 𝑦 } ) = ( { 𝑋 } × { 𝑦 } ) |
| 39 |
38
|
eqeq2i |
⊢ ( 𝑥 = ( 𝑆 × { 𝑦 } ) ↔ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) |
| 40 |
39
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( 𝑆 × { 𝑦 } ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) ) |
| 41 |
34 37 40
|
3bitr4i |
⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( 𝑆 × { 𝑦 } ) ) ) |
| 42 |
41
|
opabbii |
⊢ { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( 𝑆 × { 𝑦 } ) ) } |
| 43 |
|
df-mpt |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } |
| 44 |
4 43
|
eqtri |
⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } |
| 45 |
44
|
cnveqi |
⊢ ◡ 𝐹 = ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } |
| 46 |
|
cnvopab |
⊢ ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } |
| 47 |
45 46
|
eqtri |
⊢ ◡ 𝐹 = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } |
| 48 |
|
df-mpt |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝑆 × { 𝑦 } ) ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( 𝑆 × { 𝑦 } ) ) } |
| 49 |
42 47 48
|
3eqtr4i |
⊢ ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ ( 𝑆 × { 𝑦 } ) ) |