Metamath Proof Explorer


Theorem mapsncnv

Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses mapsncnv.s S=X
mapsncnv.b BV
mapsncnv.x XV
mapsncnv.f F=xBSxX
Assertion mapsncnv F-1=yBS×y

Proof

Step Hyp Ref Expression
1 mapsncnv.s S=X
2 mapsncnv.b BV
3 mapsncnv.x XV
4 mapsncnv.f F=xBSxX
5 elmapi xBXx:XB
6 3 snid XX
7 ffvelcdm x:XBXXxXB
8 5 6 7 sylancl xBXxXB
9 eqid X=X
10 9 2 3 mapsnconst xBXx=X×xX
11 8 10 jca xBXxXBx=X×xX
12 eleq1 y=xXyBxXB
13 sneq y=xXy=xX
14 13 xpeq2d y=xXX×y=X×xX
15 14 eqeq2d y=xXx=X×yx=X×xX
16 12 15 anbi12d y=xXyBx=X×yxXBx=X×xX
17 11 16 syl5ibrcom xBXy=xXyBx=X×y
18 17 imp xBXy=xXyBx=X×y
19 fconst6g yBX×y:XB
20 snex XV
21 2 20 elmap X×yBXX×y:XB
22 19 21 sylibr yBX×yBX
23 vex yV
24 23 fvconst2 XXX×yX=y
25 6 24 mp1i yBX×yX=y
26 25 eqcomd yBy=X×yX
27 22 26 jca yBX×yBXy=X×yX
28 eleq1 x=X×yxBXX×yBX
29 fveq1 x=X×yxX=X×yX
30 29 eqeq2d x=X×yy=xXy=X×yX
31 28 30 anbi12d x=X×yxBXy=xXX×yBXy=X×yX
32 27 31 syl5ibrcom yBx=X×yxBXy=xX
33 32 imp yBx=X×yxBXy=xX
34 18 33 impbii xBXy=xXyBx=X×y
35 1 oveq2i BS=BX
36 35 eleq2i xBSxBX
37 36 anbi1i xBSy=xXxBXy=xX
38 1 xpeq1i S×y=X×y
39 38 eqeq2i x=S×yx=X×y
40 39 anbi2i yBx=S×yyBx=X×y
41 34 37 40 3bitr4i xBSy=xXyBx=S×y
42 41 opabbii yx|xBSy=xX=yx|yBx=S×y
43 df-mpt xBSxX=xy|xBSy=xX
44 4 43 eqtri F=xy|xBSy=xX
45 44 cnveqi F-1=xy|xBSy=xX-1
46 cnvopab xy|xBSy=xX-1=yx|xBSy=xX
47 45 46 eqtri F-1=yx|xBSy=xX
48 df-mpt yBS×y=yx|yBx=S×y
49 42 47 48 3eqtr4i F-1=yBS×y