Metamath Proof Explorer


Theorem mapsnf1o2

Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses mapsncnv.s S=X
mapsncnv.b BV
mapsncnv.x XV
mapsncnv.f F=xBSxX
Assertion mapsnf1o2 F:BS1-1 ontoB

Proof

Step Hyp Ref Expression
1 mapsncnv.s S=X
2 mapsncnv.b BV
3 mapsncnv.x XV
4 mapsncnv.f F=xBSxX
5 fvex xXV
6 5 4 fnmpti FFnBS
7 snex XV
8 1 7 eqeltri SV
9 snex yV
10 8 9 xpex S×yV
11 1 2 3 4 mapsncnv F-1=yBS×y
12 10 11 fnmpti F-1FnB
13 dff1o4 F:BS1-1 ontoBFFnBSF-1FnB
14 6 12 13 mpbir2an F:BS1-1 ontoB