| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fsn2.1 | 
							⊢ 𝐴  ∈  V  | 
						
						
							| 2 | 
							
								1
							 | 
							snid | 
							⊢ 𝐴  ∈  { 𝐴 }  | 
						
						
							| 3 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( 𝐹 : { 𝐴 } ⟶ 𝐵  ∧  𝐴  ∈  { 𝐴 } )  →  ( 𝐹 ‘ 𝐴 )  ∈  𝐵 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							mpan2 | 
							⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵  →  ( 𝐹 ‘ 𝐴 )  ∈  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							ffn | 
							⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵  →  𝐹  Fn  { 𝐴 } )  | 
						
						
							| 6 | 
							
								
							 | 
							dffn3 | 
							⊢ ( 𝐹  Fn  { 𝐴 }  ↔  𝐹 : { 𝐴 } ⟶ ran  𝐹 )  | 
						
						
							| 7 | 
							
								6
							 | 
							biimpi | 
							⊢ ( 𝐹  Fn  { 𝐴 }  →  𝐹 : { 𝐴 } ⟶ ran  𝐹 )  | 
						
						
							| 8 | 
							
								
							 | 
							imadmrn | 
							⊢ ( 𝐹  “  dom  𝐹 )  =  ran  𝐹  | 
						
						
							| 9 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝐹  Fn  { 𝐴 }  →  dom  𝐹  =  { 𝐴 } )  | 
						
						
							| 10 | 
							
								9
							 | 
							imaeq2d | 
							⊢ ( 𝐹  Fn  { 𝐴 }  →  ( 𝐹  “  dom  𝐹 )  =  ( 𝐹  “  { 𝐴 } ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							eqtr3id | 
							⊢ ( 𝐹  Fn  { 𝐴 }  →  ran  𝐹  =  ( 𝐹  “  { 𝐴 } ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fnsnfv | 
							⊢ ( ( 𝐹  Fn  { 𝐴 }  ∧  𝐴  ∈  { 𝐴 } )  →  { ( 𝐹 ‘ 𝐴 ) }  =  ( 𝐹  “  { 𝐴 } ) )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							mpan2 | 
							⊢ ( 𝐹  Fn  { 𝐴 }  →  { ( 𝐹 ‘ 𝐴 ) }  =  ( 𝐹  “  { 𝐴 } ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							eqtr4d | 
							⊢ ( 𝐹  Fn  { 𝐴 }  →  ran  𝐹  =  { ( 𝐹 ‘ 𝐴 ) } )  | 
						
						
							| 15 | 
							
								14
							 | 
							feq3d | 
							⊢ ( 𝐹  Fn  { 𝐴 }  →  ( 𝐹 : { 𝐴 } ⟶ ran  𝐹  ↔  𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) )  | 
						
						
							| 16 | 
							
								7 15
							 | 
							mpbid | 
							⊢ ( 𝐹  Fn  { 𝐴 }  →  𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } )  | 
						
						
							| 17 | 
							
								5 16
							 | 
							syl | 
							⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵  →  𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } )  | 
						
						
							| 18 | 
							
								4 17
							 | 
							jca | 
							⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵  →  ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ∧  𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) )  | 
						
						
							| 19 | 
							
								
							 | 
							snssi | 
							⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  →  { ( 𝐹 ‘ 𝐴 ) }  ⊆  𝐵 )  | 
						
						
							| 20 | 
							
								
							 | 
							fss | 
							⊢ ( ( 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) }  ∧  { ( 𝐹 ‘ 𝐴 ) }  ⊆  𝐵 )  →  𝐹 : { 𝐴 } ⟶ 𝐵 )  | 
						
						
							| 21 | 
							
								20
							 | 
							ancoms | 
							⊢ ( ( { ( 𝐹 ‘ 𝐴 ) }  ⊆  𝐵  ∧  𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } )  →  𝐹 : { 𝐴 } ⟶ 𝐵 )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							sylan | 
							⊢ ( ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ∧  𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } )  →  𝐹 : { 𝐴 } ⟶ 𝐵 )  | 
						
						
							| 23 | 
							
								18 22
							 | 
							impbii | 
							⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵  ↔  ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ∧  𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fvex | 
							⊢ ( 𝐹 ‘ 𝐴 )  ∈  V  | 
						
						
							| 25 | 
							
								1 24
							 | 
							fsn | 
							⊢ ( 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) }  ↔  𝐹  =  { 〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 } )  | 
						
						
							| 26 | 
							
								25
							 | 
							anbi2i | 
							⊢ ( ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ∧  𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } )  ↔  ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ∧  𝐹  =  { 〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 } ) )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							bitri | 
							⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵  ↔  ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ∧  𝐹  =  { 〈 𝐴 ,  ( 𝐹 ‘ 𝐴 ) 〉 } ) )  |