Metamath Proof Explorer


Theorem fvcoe1

Description: Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypothesis coe1fval.a A=coe1F
Assertion fvcoe1 FVX01𝑜FX=AX

Proof

Step Hyp Ref Expression
1 coe1fval.a A=coe1F
2 df1o2 1𝑜=
3 nn0ex 0V
4 0ex V
5 2 3 4 mapsnconst X01𝑜X=1𝑜×X
6 5 adantl FVX01𝑜X=1𝑜×X
7 6 fveq2d FVX01𝑜FX=F1𝑜×X
8 elmapi X01𝑜X:1𝑜0
9 0lt1o 1𝑜
10 ffvelcdm X:1𝑜01𝑜X0
11 8 9 10 sylancl X01𝑜X0
12 1 coe1fv FVX0AX=F1𝑜×X
13 11 12 sylan2 FVX01𝑜AX=F1𝑜×X
14 7 13 eqtr4d FVX01𝑜FX=AX