| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1fval.a | ⊢ 𝐴  =  ( coe1 ‘ 𝐹 ) | 
						
							| 2 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 3 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 4 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 5 | 2 3 4 | mapsnconst | ⊢ ( 𝑋  ∈  ( ℕ0  ↑m  1o )  →  𝑋  =  ( 1o  ×  { ( 𝑋 ‘ ∅ ) } ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  𝑋  =  ( 1o  ×  { ( 𝑋 ‘ ∅ ) } ) ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ ( 1o  ×  { ( 𝑋 ‘ ∅ ) } ) ) ) | 
						
							| 8 |  | elmapi | ⊢ ( 𝑋  ∈  ( ℕ0  ↑m  1o )  →  𝑋 : 1o ⟶ ℕ0 ) | 
						
							| 9 |  | 0lt1o | ⊢ ∅  ∈  1o | 
						
							| 10 |  | ffvelcdm | ⊢ ( ( 𝑋 : 1o ⟶ ℕ0  ∧  ∅  ∈  1o )  →  ( 𝑋 ‘ ∅ )  ∈  ℕ0 ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( 𝑋  ∈  ( ℕ0  ↑m  1o )  →  ( 𝑋 ‘ ∅ )  ∈  ℕ0 ) | 
						
							| 12 | 1 | coe1fv | ⊢ ( ( 𝐹  ∈  𝑉  ∧  ( 𝑋 ‘ ∅ )  ∈  ℕ0 )  →  ( 𝐴 ‘ ( 𝑋 ‘ ∅ ) )  =  ( 𝐹 ‘ ( 1o  ×  { ( 𝑋 ‘ ∅ ) } ) ) ) | 
						
							| 13 | 11 12 | sylan2 | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝐴 ‘ ( 𝑋 ‘ ∅ ) )  =  ( 𝐹 ‘ ( 1o  ×  { ( 𝑋 ‘ ∅ ) } ) ) ) | 
						
							| 14 | 7 13 | eqtr4d | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐴 ‘ ( 𝑋 ‘ ∅ ) ) ) |