Metamath Proof Explorer


Theorem coe1f2

Description: Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses coe1fval.a A=coe1F
coe1f2.b B=BaseP
coe1f2.p P=PwSer1R
coe1f2.k K=BaseR
Assertion coe1f2 FBA:0K

Proof

Step Hyp Ref Expression
1 coe1fval.a A=coe1F
2 coe1f2.b B=BaseP
3 coe1f2.p P=PwSer1R
4 coe1f2.k K=BaseR
5 3 2 4 psr1basf FBF:01𝑜K
6 df1o2 1𝑜=
7 nn0ex 0V
8 0ex V
9 eqid x01𝑜×x=x01𝑜×x
10 6 7 8 9 mapsnf1o3 x01𝑜×x:01-1 onto01𝑜
11 f1of x01𝑜×x:01-1 onto01𝑜x01𝑜×x:001𝑜
12 10 11 ax-mp x01𝑜×x:001𝑜
13 fco F:01𝑜Kx01𝑜×x:001𝑜Fx01𝑜×x:0K
14 5 12 13 sylancl FBFx01𝑜×x:0K
15 1 2 3 9 coe1fval3 FBA=Fx01𝑜×x
16 15 feq1d FBA:0KFx01𝑜×x:0K
17 14 16 mpbird FBA:0K