Metamath Proof Explorer


Theorem pm2mpmhm

Description: The transformation of polynomial matrices into polynomials over matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 22-Oct-2019) (Revised by AV, 6-Dec-2019)

Ref Expression
Hypotheses pm2mpmhm.p P=Poly1R
pm2mpmhm.c C=NMatP
pm2mpmhm.a A=NMatR
pm2mpmhm.q Q=Poly1A
pm2mpmhm.t T=NpMatToMatPolyR
Assertion pm2mpmhm NFinRRingTmulGrpCMndHommulGrpQ

Proof

Step Hyp Ref Expression
1 pm2mpmhm.p P=Poly1R
2 pm2mpmhm.c C=NMatP
3 pm2mpmhm.a A=NMatR
4 pm2mpmhm.q Q=Poly1A
5 pm2mpmhm.t T=NpMatToMatPolyR
6 1 2 pmatring NFinRRingCRing
7 eqid mulGrpC=mulGrpC
8 7 ringmgp CRingmulGrpCMnd
9 6 8 syl NFinRRingmulGrpCMnd
10 3 matring NFinRRingARing
11 4 ply1ring ARingQRing
12 eqid mulGrpQ=mulGrpQ
13 12 ringmgp QRingmulGrpQMnd
14 10 11 13 3syl NFinRRingmulGrpQMnd
15 eqid BaseC=BaseC
16 7 15 mgpbas BaseC=BasemulGrpC
17 16 eqcomi BasemulGrpC=BaseC
18 eqid Q=Q
19 eqid mulGrpQ=mulGrpQ
20 eqid var1A=var1A
21 eqid BaseQ=BaseQ
22 12 21 mgpbas BaseQ=BasemulGrpQ
23 22 eqcomi BasemulGrpQ=BaseQ
24 1 2 17 18 19 20 3 4 5 23 pm2mpf NFinRRingT:BasemulGrpCBasemulGrpQ
25 1 2 3 4 5 17 pm2mpmhmlem2 NFinRRingxBasemulGrpCyBasemulGrpCTxCy=TxQTy
26 1 2 15 18 19 20 3 4 5 idpm2idmp NFinRRingT1C=1Q
27 24 25 26 3jca NFinRRingT:BasemulGrpCBasemulGrpQxBasemulGrpCyBasemulGrpCTxCy=TxQTyT1C=1Q
28 eqid BasemulGrpC=BasemulGrpC
29 eqid BasemulGrpQ=BasemulGrpQ
30 eqid C=C
31 7 30 mgpplusg C=+mulGrpC
32 eqid Q=Q
33 12 32 mgpplusg Q=+mulGrpQ
34 eqid 1C=1C
35 7 34 ringidval 1C=0mulGrpC
36 eqid 1Q=1Q
37 12 36 ringidval 1Q=0mulGrpQ
38 28 29 31 33 35 37 ismhm TmulGrpCMndHommulGrpQmulGrpCMndmulGrpQMndT:BasemulGrpCBasemulGrpQxBasemulGrpCyBasemulGrpCTxCy=TxQTyT1C=1Q
39 9 14 27 38 syl21anbrc NFinRRingTmulGrpCMndHommulGrpQ