Description: The transformation of polynomial matrices into polynomials over matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 22-Oct-2019) (Revised by AV, 6-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pm2mpmhm.p | |
|
pm2mpmhm.c | |
||
pm2mpmhm.a | |
||
pm2mpmhm.q | |
||
pm2mpmhm.t | |
||
Assertion | pm2mpmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2mpmhm.p | |
|
2 | pm2mpmhm.c | |
|
3 | pm2mpmhm.a | |
|
4 | pm2mpmhm.q | |
|
5 | pm2mpmhm.t | |
|
6 | 1 2 | pmatring | |
7 | eqid | |
|
8 | 7 | ringmgp | |
9 | 6 8 | syl | |
10 | 3 | matring | |
11 | 4 | ply1ring | |
12 | eqid | |
|
13 | 12 | ringmgp | |
14 | 10 11 13 | 3syl | |
15 | eqid | |
|
16 | 7 15 | mgpbas | |
17 | 16 | eqcomi | |
18 | eqid | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | 12 21 | mgpbas | |
23 | 22 | eqcomi | |
24 | 1 2 17 18 19 20 3 4 5 23 | pm2mpf | |
25 | 1 2 3 4 5 17 | pm2mpmhmlem2 | |
26 | 1 2 15 18 19 20 3 4 5 | idpm2idmp | |
27 | 24 25 26 | 3jca | |
28 | eqid | |
|
29 | eqid | |
|
30 | eqid | |
|
31 | 7 30 | mgpplusg | |
32 | eqid | |
|
33 | 12 32 | mgpplusg | |
34 | eqid | |
|
35 | 7 34 | ringidval | |
36 | eqid | |
|
37 | 12 36 | ringidval | |
38 | 28 29 31 33 35 37 | ismhm | |
39 | 9 14 27 38 | syl21anbrc | |