Metamath Proof Explorer


Theorem pm2mpmhm

Description: The transformation of polynomial matrices into polynomials over matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 22-Oct-2019) (Revised by AV, 6-Dec-2019)

Ref Expression
Hypotheses pm2mpmhm.p P = Poly 1 R
pm2mpmhm.c C = N Mat P
pm2mpmhm.a A = N Mat R
pm2mpmhm.q Q = Poly 1 A
pm2mpmhm.t T = N pMatToMatPoly R
Assertion pm2mpmhm N Fin R Ring T mulGrp C MndHom mulGrp Q

Proof

Step Hyp Ref Expression
1 pm2mpmhm.p P = Poly 1 R
2 pm2mpmhm.c C = N Mat P
3 pm2mpmhm.a A = N Mat R
4 pm2mpmhm.q Q = Poly 1 A
5 pm2mpmhm.t T = N pMatToMatPoly R
6 1 2 pmatring N Fin R Ring C Ring
7 eqid mulGrp C = mulGrp C
8 7 ringmgp C Ring mulGrp C Mnd
9 6 8 syl N Fin R Ring mulGrp C Mnd
10 3 matring N Fin R Ring A Ring
11 4 ply1ring A Ring Q Ring
12 eqid mulGrp Q = mulGrp Q
13 12 ringmgp Q Ring mulGrp Q Mnd
14 10 11 13 3syl N Fin R Ring mulGrp Q Mnd
15 eqid Base C = Base C
16 7 15 mgpbas Base C = Base mulGrp C
17 16 eqcomi Base mulGrp C = Base C
18 eqid Q = Q
19 eqid mulGrp Q = mulGrp Q
20 eqid var 1 A = var 1 A
21 eqid Base Q = Base Q
22 12 21 mgpbas Base Q = Base mulGrp Q
23 22 eqcomi Base mulGrp Q = Base Q
24 1 2 17 18 19 20 3 4 5 23 pm2mpf N Fin R Ring T : Base mulGrp C Base mulGrp Q
25 1 2 3 4 5 17 pm2mpmhmlem2 N Fin R Ring x Base mulGrp C y Base mulGrp C T x C y = T x Q T y
26 1 2 15 18 19 20 3 4 5 idpm2idmp N Fin R Ring T 1 C = 1 Q
27 24 25 26 3jca N Fin R Ring T : Base mulGrp C Base mulGrp Q x Base mulGrp C y Base mulGrp C T x C y = T x Q T y T 1 C = 1 Q
28 eqid Base mulGrp C = Base mulGrp C
29 eqid Base mulGrp Q = Base mulGrp Q
30 eqid C = C
31 7 30 mgpplusg C = + mulGrp C
32 eqid Q = Q
33 12 32 mgpplusg Q = + mulGrp Q
34 eqid 1 C = 1 C
35 7 34 ringidval 1 C = 0 mulGrp C
36 eqid 1 Q = 1 Q
37 12 36 ringidval 1 Q = 0 mulGrp Q
38 28 29 31 33 35 37 ismhm T mulGrp C MndHom mulGrp Q mulGrp C Mnd mulGrp Q Mnd T : Base mulGrp C Base mulGrp Q x Base mulGrp C y Base mulGrp C T x C y = T x Q T y T 1 C = 1 Q
39 9 14 27 38 syl21anbrc N Fin R Ring T mulGrp C MndHom mulGrp Q