| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptmhm.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsummptmhm.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsummptmhm.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
gsummptmhm.h |
⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
| 5 |
|
gsummptmhm.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
gsummptmhm.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 7 |
|
gsummptmhm.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| 8 |
|
gsummptmhm.w |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) finSupp 0 ) |
| 9 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 11 |
1 10
|
mhmf |
⊢ ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 12 |
|
ffn |
⊢ ( 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) → 𝐾 Fn 𝐵 ) |
| 13 |
6 11 12
|
3syl |
⊢ ( 𝜑 → 𝐾 Fn 𝐵 ) |
| 14 |
|
dffn5 |
⊢ ( 𝐾 Fn 𝐵 ↔ 𝐾 = ( 𝑦 ∈ 𝐵 ↦ ( 𝐾 ‘ 𝑦 ) ) ) |
| 15 |
13 14
|
sylib |
⊢ ( 𝜑 → 𝐾 = ( 𝑦 ∈ 𝐵 ↦ ( 𝐾 ‘ 𝑦 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐾 ‘ 𝑦 ) = ( 𝐾 ‘ 𝐶 ) ) |
| 17 |
7 9 15 16
|
fmptco |
⊢ ( 𝜑 → ( 𝐾 ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐾 ‘ 𝐶 ) ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝜑 → ( 𝐻 Σg ( 𝐾 ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) = ( 𝐻 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐾 ‘ 𝐶 ) ) ) ) |
| 19 |
7
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
| 20 |
1 2 3 4 5 6 19 8
|
gsummhm |
⊢ ( 𝜑 → ( 𝐻 Σg ( 𝐾 ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) = ( 𝐾 ‘ ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) ) |
| 21 |
18 20
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐾 ‘ 𝐶 ) ) ) = ( 𝐾 ‘ ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) ) |