| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmidgsum.a |
|
| 2 |
|
cpmidgsum.b |
|
| 3 |
|
cpmidgsum.p |
|
| 4 |
|
cpmidgsum.y |
|
| 5 |
|
cpmidgsum.x |
|
| 6 |
|
cpmidgsum.e |
|
| 7 |
|
cpmidgsum.m |
|
| 8 |
|
cpmidgsum.1 |
|
| 9 |
|
cpmidgsum.u |
|
| 10 |
|
cpmidgsum.c |
|
| 11 |
|
cpmidgsum.k |
|
| 12 |
|
cpmidgsum.h |
|
| 13 |
|
cpmidgsumm2pm.o |
|
| 14 |
|
cpmidgsumm2pm.m |
|
| 15 |
|
cpmidgsumm2pm.t |
|
| 16 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cpmidgsum |
|
| 17 |
|
3simpa |
|
| 18 |
17
|
adantr |
|
| 19 |
|
eqid |
|
| 20 |
10 1 2 3 19
|
chpmatply1 |
|
| 21 |
11 20
|
eqeltrid |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
22 19 3 23
|
coe1fvalcl |
|
| 25 |
21 24
|
sylan |
|
| 26 |
|
crngring |
|
| 27 |
26
|
anim2i |
|
| 28 |
1
|
matring |
|
| 29 |
2 13
|
ringidcl |
|
| 30 |
27 28 29
|
3syl |
|
| 31 |
30
|
3adant3 |
|
| 32 |
31
|
adantr |
|
| 33 |
|
eqid |
|
| 34 |
15 1 2 3 4 33 23 9 14 7
|
mat2pmatlin |
|
| 35 |
18 25 32 34
|
syl12anc |
|
| 36 |
15 1 2 3 4 33
|
mat2pmatrhm |
|
| 37 |
13 8
|
rhm1 |
|
| 38 |
17 36 37
|
3syl |
|
| 39 |
38
|
adantr |
|
| 40 |
39
|
oveq2d |
|
| 41 |
35 40
|
eqtr2d |
|
| 42 |
41
|
oveq2d |
|
| 43 |
42
|
mpteq2dva |
|
| 44 |
43
|
oveq2d |
|
| 45 |
16 44
|
eqtrd |
|