Metamath Proof Explorer


Theorem cpmidgsumm2pm

Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum with a matrix to polynomial matrix transformation. (Contributed by AV, 13-Nov-2019)

Ref Expression
Hypotheses cpmidgsum.a A = N Mat R
cpmidgsum.b B = Base A
cpmidgsum.p P = Poly 1 R
cpmidgsum.y Y = N Mat P
cpmidgsum.x X = var 1 R
cpmidgsum.e × ˙ = mulGrp P
cpmidgsum.m · ˙ = Y
cpmidgsum.1 1 ˙ = 1 Y
cpmidgsum.u U = algSc P
cpmidgsum.c C = N CharPlyMat R
cpmidgsum.k K = C M
cpmidgsum.h H = K · ˙ 1 ˙
cpmidgsumm2pm.o O = 1 A
cpmidgsumm2pm.m ˙ = A
cpmidgsumm2pm.t T = N matToPolyMat R
Assertion cpmidgsumm2pm N Fin R CRing M B H = Y n 0 n × ˙ X · ˙ T coe 1 K n ˙ O

Proof

Step Hyp Ref Expression
1 cpmidgsum.a A = N Mat R
2 cpmidgsum.b B = Base A
3 cpmidgsum.p P = Poly 1 R
4 cpmidgsum.y Y = N Mat P
5 cpmidgsum.x X = var 1 R
6 cpmidgsum.e × ˙ = mulGrp P
7 cpmidgsum.m · ˙ = Y
8 cpmidgsum.1 1 ˙ = 1 Y
9 cpmidgsum.u U = algSc P
10 cpmidgsum.c C = N CharPlyMat R
11 cpmidgsum.k K = C M
12 cpmidgsum.h H = K · ˙ 1 ˙
13 cpmidgsumm2pm.o O = 1 A
14 cpmidgsumm2pm.m ˙ = A
15 cpmidgsumm2pm.t T = N matToPolyMat R
16 1 2 3 4 5 6 7 8 9 10 11 12 cpmidgsum N Fin R CRing M B H = Y n 0 n × ˙ X · ˙ U coe 1 K n · ˙ 1 ˙
17 3simpa N Fin R CRing M B N Fin R CRing
18 17 adantr N Fin R CRing M B n 0 N Fin R CRing
19 eqid Base P = Base P
20 10 1 2 3 19 chpmatply1 N Fin R CRing M B C M Base P
21 11 20 eqeltrid N Fin R CRing M B K Base P
22 eqid coe 1 K = coe 1 K
23 eqid Base R = Base R
24 22 19 3 23 coe1fvalcl K Base P n 0 coe 1 K n Base R
25 21 24 sylan N Fin R CRing M B n 0 coe 1 K n Base R
26 crngring R CRing R Ring
27 26 anim2i N Fin R CRing N Fin R Ring
28 1 matring N Fin R Ring A Ring
29 2 13 ringidcl A Ring O B
30 27 28 29 3syl N Fin R CRing O B
31 30 3adant3 N Fin R CRing M B O B
32 31 adantr N Fin R CRing M B n 0 O B
33 eqid Base Y = Base Y
34 15 1 2 3 4 33 23 9 14 7 mat2pmatlin N Fin R CRing coe 1 K n Base R O B T coe 1 K n ˙ O = U coe 1 K n · ˙ T O
35 18 25 32 34 syl12anc N Fin R CRing M B n 0 T coe 1 K n ˙ O = U coe 1 K n · ˙ T O
36 15 1 2 3 4 33 mat2pmatrhm N Fin R CRing T A RingHom Y
37 13 8 rhm1 T A RingHom Y T O = 1 ˙
38 17 36 37 3syl N Fin R CRing M B T O = 1 ˙
39 38 adantr N Fin R CRing M B n 0 T O = 1 ˙
40 39 oveq2d N Fin R CRing M B n 0 U coe 1 K n · ˙ T O = U coe 1 K n · ˙ 1 ˙
41 35 40 eqtr2d N Fin R CRing M B n 0 U coe 1 K n · ˙ 1 ˙ = T coe 1 K n ˙ O
42 41 oveq2d N Fin R CRing M B n 0 n × ˙ X · ˙ U coe 1 K n · ˙ 1 ˙ = n × ˙ X · ˙ T coe 1 K n ˙ O
43 42 mpteq2dva N Fin R CRing M B n 0 n × ˙ X · ˙ U coe 1 K n · ˙ 1 ˙ = n 0 n × ˙ X · ˙ T coe 1 K n ˙ O
44 43 oveq2d N Fin R CRing M B Y n 0 n × ˙ X · ˙ U coe 1 K n · ˙ 1 ˙ = Y n 0 n × ˙ X · ˙ T coe 1 K n ˙ O
45 16 44 eqtrd N Fin R CRing M B H = Y n 0 n × ˙ X · ˙ T coe 1 K n ˙ O