| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmidgsum.a |  | 
						
							| 2 |  | cpmidgsum.b |  | 
						
							| 3 |  | cpmidgsum.p |  | 
						
							| 4 |  | cpmidgsum.y |  | 
						
							| 5 |  | cpmidgsum.x |  | 
						
							| 6 |  | cpmidgsum.e |  | 
						
							| 7 |  | cpmidgsum.m |  | 
						
							| 8 |  | cpmidgsum.1 |  | 
						
							| 9 |  | cpmidgsum.u |  | 
						
							| 10 |  | cpmidgsum.c |  | 
						
							| 11 |  | cpmidgsum.k |  | 
						
							| 12 |  | cpmidgsum.h |  | 
						
							| 13 |  | cpmidgsumm2pm.o |  | 
						
							| 14 |  | cpmidgsumm2pm.m |  | 
						
							| 15 |  | cpmidgsumm2pm.t |  | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 | cpmidgsum |  | 
						
							| 17 |  | 3simpa |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 10 1 2 3 19 | chpmatply1 |  | 
						
							| 21 | 11 20 | eqeltrid |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 22 19 3 23 | coe1fvalcl |  | 
						
							| 25 | 21 24 | sylan |  | 
						
							| 26 |  | crngring |  | 
						
							| 27 | 26 | anim2i |  | 
						
							| 28 | 1 | matring |  | 
						
							| 29 | 2 13 | ringidcl |  | 
						
							| 30 | 27 28 29 | 3syl |  | 
						
							| 31 | 30 | 3adant3 |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 15 1 2 3 4 33 23 9 14 7 | mat2pmatlin |  | 
						
							| 35 | 18 25 32 34 | syl12anc |  | 
						
							| 36 | 15 1 2 3 4 33 | mat2pmatrhm |  | 
						
							| 37 | 13 8 | rhm1 |  | 
						
							| 38 | 17 36 37 | 3syl |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 | 39 | oveq2d |  | 
						
							| 41 | 35 40 | eqtr2d |  | 
						
							| 42 | 41 | oveq2d |  | 
						
							| 43 | 42 | mpteq2dva |  | 
						
							| 44 | 43 | oveq2d |  | 
						
							| 45 | 16 44 | eqtrd |  |