| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmidgsum.a |  | 
						
							| 2 |  | cpmidgsum.b |  | 
						
							| 3 |  | cpmidgsum.p |  | 
						
							| 4 |  | cpmidgsum.y |  | 
						
							| 5 |  | cpmidgsum.x |  | 
						
							| 6 |  | cpmidgsum.e |  | 
						
							| 7 |  | cpmidgsum.m |  | 
						
							| 8 |  | cpmidgsum.1 |  | 
						
							| 9 |  | cpmidgsum.u |  | 
						
							| 10 |  | cpmidgsum.c |  | 
						
							| 11 |  | cpmidgsum.k |  | 
						
							| 12 |  | cpmidgsum.h |  | 
						
							| 13 |  | cpmidgsumm2pm.o |  | 
						
							| 14 |  | cpmidgsumm2pm.m |  | 
						
							| 15 |  | cpmidgsumm2pm.t |  | 
						
							| 16 |  | cpmidpmat.g |  | 
						
							| 17 |  | fvexd |  | 
						
							| 18 |  | ovexd |  | 
						
							| 19 |  | fveq2 |  | 
						
							| 20 | 19 | oveq1d |  | 
						
							| 21 |  | fvexd |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 10 1 2 3 22 | chpmatply1 |  | 
						
							| 24 | 11 23 | eqeltrid |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 25 22 3 26 | coe1fvalcl |  | 
						
							| 28 | 24 27 | sylan |  | 
						
							| 29 |  | crngring |  | 
						
							| 30 | 29 | 3ad2ant2 |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 3 22 31 | mptcoe1fsupp |  | 
						
							| 33 | 30 24 32 | syl2anc |  | 
						
							| 34 | 21 28 33 | mptnn0fsuppr |  | 
						
							| 35 |  | csbfv |  | 
						
							| 36 | 35 | a1i |  | 
						
							| 37 | 36 | eqeq1d |  | 
						
							| 38 | 37 | biimpa |  | 
						
							| 39 | 1 | matsca2 |  | 
						
							| 40 | 39 | 3adant3 |  | 
						
							| 41 | 40 | ad2antrr |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 | 38 42 | eqtrd |  | 
						
							| 44 | 43 | oveq1d |  | 
						
							| 45 | 1 | matlmod |  | 
						
							| 46 | 29 45 | sylan2 |  | 
						
							| 47 | 46 | 3adant3 |  | 
						
							| 48 | 1 | matring |  | 
						
							| 49 | 29 48 | sylan2 |  | 
						
							| 50 | 2 13 | ringidcl |  | 
						
							| 51 | 49 50 | syl |  | 
						
							| 52 | 51 | 3adant3 |  | 
						
							| 53 |  | eqid |  | 
						
							| 54 |  | eqid |  | 
						
							| 55 |  | eqid |  | 
						
							| 56 | 2 53 14 54 55 | lmod0vs |  | 
						
							| 57 | 47 52 56 | syl2anc |  | 
						
							| 58 | 57 | ad2antrr |  | 
						
							| 59 | 44 58 | eqtrd |  | 
						
							| 60 | 59 | ex |  | 
						
							| 61 | 60 | imim2d |  | 
						
							| 62 | 61 | ralimdva |  | 
						
							| 63 | 62 | reximdv |  | 
						
							| 64 | 34 63 | mpd |  | 
						
							| 65 | 17 18 20 64 | mptnn0fsuppd |  | 
						
							| 66 | 16 65 | eqbrtrid |  |