| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpmatply1.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 2 |  | chpmatply1.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | chpmatply1.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | chpmatply1.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | chpmatply1.e |  |-  E = ( Base ` P ) | 
						
							| 6 |  | eqid |  |-  ( N Mat P ) = ( N Mat P ) | 
						
							| 7 |  | eqid |  |-  ( N maDet P ) = ( N maDet P ) | 
						
							| 8 |  | eqid |  |-  ( -g ` ( N Mat P ) ) = ( -g ` ( N Mat P ) ) | 
						
							| 9 |  | eqid |  |-  ( var1 ` R ) = ( var1 ` R ) | 
						
							| 10 |  | eqid |  |-  ( .s ` ( N Mat P ) ) = ( .s ` ( N Mat P ) ) | 
						
							| 11 |  | eqid |  |-  ( N matToPolyMat R ) = ( N matToPolyMat R ) | 
						
							| 12 |  | eqid |  |-  ( 1r ` ( N Mat P ) ) = ( 1r ` ( N Mat P ) ) | 
						
							| 13 | 1 2 3 4 6 7 8 9 10 11 12 | chpmatval |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) ) | 
						
							| 14 | 4 | ply1crng |  |-  ( R e. CRing -> P e. CRing ) | 
						
							| 15 | 14 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P e. CRing ) | 
						
							| 16 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 17 |  | eqid |  |-  ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) = ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) | 
						
							| 18 | 2 3 4 6 9 11 8 10 12 17 | chmatcl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) | 
						
							| 19 | 16 18 | syl3an2 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) | 
						
							| 20 |  | eqid |  |-  ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) ) | 
						
							| 21 | 7 6 20 5 | mdetcl |  |-  ( ( P e. CRing /\ ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) -> ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) e. E ) | 
						
							| 22 | 15 19 21 | syl2anc |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) e. E ) | 
						
							| 23 | 13 22 | eqeltrd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. E ) |