| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpmatply1.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 2 |  | chpmatply1.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | chpmatply1.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | chpmatply1.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | chpmatval2.y |  |-  Y = ( N Mat P ) | 
						
							| 6 |  | chpmatval2.m1 |  |-  .- = ( -g ` Y ) | 
						
							| 7 |  | chpmatval2.x |  |-  X = ( var1 ` R ) | 
						
							| 8 |  | chpmatval2.t1 |  |-  .x. = ( .s ` Y ) | 
						
							| 9 |  | chpmatval2.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 10 |  | chpmatval2.i |  |-  .1. = ( 1r ` Y ) | 
						
							| 11 |  | chpmatval2.g |  |-  G = ( SymGrp ` N ) | 
						
							| 12 |  | chpmatval2.h |  |-  H = ( Base ` G ) | 
						
							| 13 |  | chpmatval2.z |  |-  Z = ( ZRHom ` P ) | 
						
							| 14 |  | chpmatval2.s |  |-  S = ( pmSgn ` N ) | 
						
							| 15 |  | chpmatval2.u |  |-  U = ( mulGrp ` P ) | 
						
							| 16 |  | chpmatval2.rm |  |-  .X. = ( .r ` P ) | 
						
							| 17 |  | eqid |  |-  ( N maDet P ) = ( N maDet P ) | 
						
							| 18 | 1 2 3 4 5 17 6 7 8 9 10 | chpmatval |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) | 
						
							| 19 |  | eqid |  |-  ( N Mat P ) = ( N Mat P ) | 
						
							| 20 | 5 | fveq2i |  |-  ( -g ` Y ) = ( -g ` ( N Mat P ) ) | 
						
							| 21 | 6 20 | eqtri |  |-  .- = ( -g ` ( N Mat P ) ) | 
						
							| 22 | 5 | fveq2i |  |-  ( .s ` Y ) = ( .s ` ( N Mat P ) ) | 
						
							| 23 | 8 22 | eqtri |  |-  .x. = ( .s ` ( N Mat P ) ) | 
						
							| 24 | 5 | fveq2i |  |-  ( 1r ` Y ) = ( 1r ` ( N Mat P ) ) | 
						
							| 25 | 10 24 | eqtri |  |-  .1. = ( 1r ` ( N Mat P ) ) | 
						
							| 26 |  | eqid |  |-  ( ( X .x. .1. ) .- ( T ` M ) ) = ( ( X .x. .1. ) .- ( T ` M ) ) | 
						
							| 27 | 2 3 4 19 7 9 21 23 25 26 | chmatcl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( X .x. .1. ) .- ( T ` M ) ) e. ( Base ` ( N Mat P ) ) ) | 
						
							| 28 | 5 | eqcomi |  |-  ( N Mat P ) = Y | 
						
							| 29 | 28 | fveq2i |  |-  ( Base ` ( N Mat P ) ) = ( Base ` Y ) | 
						
							| 30 | 11 | fveq2i |  |-  ( Base ` G ) = ( Base ` ( SymGrp ` N ) ) | 
						
							| 31 | 12 30 | eqtri |  |-  H = ( Base ` ( SymGrp ` N ) ) | 
						
							| 32 | 17 5 29 31 13 14 16 15 | mdetleib |  |-  ( ( ( X .x. .1. ) .- ( T ` M ) ) e. ( Base ` ( N Mat P ) ) -> ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) = ( P gsum ( p e. H |-> ( ( ( Z o. S ) ` p ) .X. ( U gsum ( x e. N |-> ( ( p ` x ) ( ( X .x. .1. ) .- ( T ` M ) ) x ) ) ) ) ) ) ) | 
						
							| 33 | 27 32 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) = ( P gsum ( p e. H |-> ( ( ( Z o. S ) ` p ) .X. ( U gsum ( x e. N |-> ( ( p ` x ) ( ( X .x. .1. ) .- ( T ` M ) ) x ) ) ) ) ) ) ) | 
						
							| 34 | 18 33 | eqtrd |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( C ` M ) = ( P gsum ( p e. H |-> ( ( ( Z o. S ) ` p ) .X. ( U gsum ( x e. N |-> ( ( p ` x ) ( ( X .x. .1. ) .- ( T ` M ) ) x ) ) ) ) ) ) ) |