| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpmatfval.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 2 |  | chpmatfval.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | chpmatfval.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | chpmatfval.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | chpmatfval.y |  |-  Y = ( N Mat P ) | 
						
							| 6 |  | chpmatfval.d |  |-  D = ( N maDet P ) | 
						
							| 7 |  | chpmatfval.s |  |-  .- = ( -g ` Y ) | 
						
							| 8 |  | chpmatfval.x |  |-  X = ( var1 ` R ) | 
						
							| 9 |  | chpmatfval.m |  |-  .x. = ( .s ` Y ) | 
						
							| 10 |  | chpmatfval.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 11 |  | chpmatfval.i |  |-  .1. = ( 1r ` Y ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 11 | chpmatfval |  |-  ( ( N e. Fin /\ R e. V ) -> C = ( m e. B |-> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) ) | 
						
							| 13 | 12 | 3adant3 |  |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> C = ( m e. B |-> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) ) | 
						
							| 14 |  | fveq2 |  |-  ( m = M -> ( T ` m ) = ( T ` M ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( m = M -> ( ( X .x. .1. ) .- ( T ` m ) ) = ( ( X .x. .1. ) .- ( T ` M ) ) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( m = M -> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) = ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ m = M ) -> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) = ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) | 
						
							| 18 |  | simp3 |  |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> M e. B ) | 
						
							| 19 |  | fvexd |  |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) e. _V ) | 
						
							| 20 | 13 17 18 19 | fvmptd |  |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( C ` M ) = ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) |