| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpmatfval.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 2 |  | chpmatfval.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | chpmatfval.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | chpmatfval.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | chpmatfval.y |  |-  Y = ( N Mat P ) | 
						
							| 6 |  | chpmatfval.d |  |-  D = ( N maDet P ) | 
						
							| 7 |  | chpmatfval.s |  |-  .- = ( -g ` Y ) | 
						
							| 8 |  | chpmatfval.x |  |-  X = ( var1 ` R ) | 
						
							| 9 |  | chpmatfval.m |  |-  .x. = ( .s ` Y ) | 
						
							| 10 |  | chpmatfval.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 11 |  | chpmatfval.i |  |-  .1. = ( 1r ` Y ) | 
						
							| 12 |  | df-chpmat |  |-  CharPlyMat = ( n e. Fin , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( ( n maDet ( Poly1 ` r ) ) ` ( ( ( var1 ` r ) ( .s ` ( n Mat ( Poly1 ` r ) ) ) ( 1r ` ( n Mat ( Poly1 ` r ) ) ) ) ( -g ` ( n Mat ( Poly1 ` r ) ) ) ( ( n matToPolyMat r ) ` m ) ) ) ) ) | 
						
							| 13 | 12 | a1i |  |-  ( ( N e. Fin /\ R e. V ) -> CharPlyMat = ( n e. Fin , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( ( n maDet ( Poly1 ` r ) ) ` ( ( ( var1 ` r ) ( .s ` ( n Mat ( Poly1 ` r ) ) ) ( 1r ` ( n Mat ( Poly1 ` r ) ) ) ) ( -g ` ( n Mat ( Poly1 ` r ) ) ) ( ( n matToPolyMat r ) ` m ) ) ) ) ) ) | 
						
							| 14 |  | oveq12 |  |-  ( ( n = N /\ r = R ) -> ( n Mat r ) = ( N Mat R ) ) | 
						
							| 15 | 14 2 | eqtr4di |  |-  ( ( n = N /\ r = R ) -> ( n Mat r ) = A ) | 
						
							| 16 | 15 | fveq2d |  |-  ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = ( Base ` A ) ) | 
						
							| 17 | 16 3 | eqtr4di |  |-  ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = B ) | 
						
							| 18 |  | simpl |  |-  ( ( n = N /\ r = R ) -> n = N ) | 
						
							| 19 |  | simpr |  |-  ( ( n = N /\ r = R ) -> r = R ) | 
						
							| 20 | 19 | fveq2d |  |-  ( ( n = N /\ r = R ) -> ( Poly1 ` r ) = ( Poly1 ` R ) ) | 
						
							| 21 | 20 4 | eqtr4di |  |-  ( ( n = N /\ r = R ) -> ( Poly1 ` r ) = P ) | 
						
							| 22 | 18 21 | oveq12d |  |-  ( ( n = N /\ r = R ) -> ( n maDet ( Poly1 ` r ) ) = ( N maDet P ) ) | 
						
							| 23 | 22 6 | eqtr4di |  |-  ( ( n = N /\ r = R ) -> ( n maDet ( Poly1 ` r ) ) = D ) | 
						
							| 24 |  | fveq2 |  |-  ( r = R -> ( Poly1 ` r ) = ( Poly1 ` R ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( n = N /\ r = R ) -> ( Poly1 ` r ) = ( Poly1 ` R ) ) | 
						
							| 26 | 25 4 | eqtr4di |  |-  ( ( n = N /\ r = R ) -> ( Poly1 ` r ) = P ) | 
						
							| 27 | 18 26 | oveq12d |  |-  ( ( n = N /\ r = R ) -> ( n Mat ( Poly1 ` r ) ) = ( N Mat P ) ) | 
						
							| 28 | 27 5 | eqtr4di |  |-  ( ( n = N /\ r = R ) -> ( n Mat ( Poly1 ` r ) ) = Y ) | 
						
							| 29 | 28 | fveq2d |  |-  ( ( n = N /\ r = R ) -> ( -g ` ( n Mat ( Poly1 ` r ) ) ) = ( -g ` Y ) ) | 
						
							| 30 | 29 7 | eqtr4di |  |-  ( ( n = N /\ r = R ) -> ( -g ` ( n Mat ( Poly1 ` r ) ) ) = .- ) | 
						
							| 31 | 28 | fveq2d |  |-  ( ( n = N /\ r = R ) -> ( .s ` ( n Mat ( Poly1 ` r ) ) ) = ( .s ` Y ) ) | 
						
							| 32 | 31 9 | eqtr4di |  |-  ( ( n = N /\ r = R ) -> ( .s ` ( n Mat ( Poly1 ` r ) ) ) = .x. ) | 
						
							| 33 |  | fveq2 |  |-  ( r = R -> ( var1 ` r ) = ( var1 ` R ) ) | 
						
							| 34 | 33 8 | eqtr4di |  |-  ( r = R -> ( var1 ` r ) = X ) | 
						
							| 35 | 34 | adantl |  |-  ( ( n = N /\ r = R ) -> ( var1 ` r ) = X ) | 
						
							| 36 | 28 | fveq2d |  |-  ( ( n = N /\ r = R ) -> ( 1r ` ( n Mat ( Poly1 ` r ) ) ) = ( 1r ` Y ) ) | 
						
							| 37 | 36 11 | eqtr4di |  |-  ( ( n = N /\ r = R ) -> ( 1r ` ( n Mat ( Poly1 ` r ) ) ) = .1. ) | 
						
							| 38 | 32 35 37 | oveq123d |  |-  ( ( n = N /\ r = R ) -> ( ( var1 ` r ) ( .s ` ( n Mat ( Poly1 ` r ) ) ) ( 1r ` ( n Mat ( Poly1 ` r ) ) ) ) = ( X .x. .1. ) ) | 
						
							| 39 |  | oveq12 |  |-  ( ( n = N /\ r = R ) -> ( n matToPolyMat r ) = ( N matToPolyMat R ) ) | 
						
							| 40 | 39 10 | eqtr4di |  |-  ( ( n = N /\ r = R ) -> ( n matToPolyMat r ) = T ) | 
						
							| 41 | 40 | fveq1d |  |-  ( ( n = N /\ r = R ) -> ( ( n matToPolyMat r ) ` m ) = ( T ` m ) ) | 
						
							| 42 | 30 38 41 | oveq123d |  |-  ( ( n = N /\ r = R ) -> ( ( ( var1 ` r ) ( .s ` ( n Mat ( Poly1 ` r ) ) ) ( 1r ` ( n Mat ( Poly1 ` r ) ) ) ) ( -g ` ( n Mat ( Poly1 ` r ) ) ) ( ( n matToPolyMat r ) ` m ) ) = ( ( X .x. .1. ) .- ( T ` m ) ) ) | 
						
							| 43 | 23 42 | fveq12d |  |-  ( ( n = N /\ r = R ) -> ( ( n maDet ( Poly1 ` r ) ) ` ( ( ( var1 ` r ) ( .s ` ( n Mat ( Poly1 ` r ) ) ) ( 1r ` ( n Mat ( Poly1 ` r ) ) ) ) ( -g ` ( n Mat ( Poly1 ` r ) ) ) ( ( n matToPolyMat r ) ` m ) ) ) = ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) | 
						
							| 44 | 17 43 | mpteq12dv |  |-  ( ( n = N /\ r = R ) -> ( m e. ( Base ` ( n Mat r ) ) |-> ( ( n maDet ( Poly1 ` r ) ) ` ( ( ( var1 ` r ) ( .s ` ( n Mat ( Poly1 ` r ) ) ) ( 1r ` ( n Mat ( Poly1 ` r ) ) ) ) ( -g ` ( n Mat ( Poly1 ` r ) ) ) ( ( n matToPolyMat r ) ` m ) ) ) ) = ( m e. B |-> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ( N e. Fin /\ R e. V ) /\ ( n = N /\ r = R ) ) -> ( m e. ( Base ` ( n Mat r ) ) |-> ( ( n maDet ( Poly1 ` r ) ) ` ( ( ( var1 ` r ) ( .s ` ( n Mat ( Poly1 ` r ) ) ) ( 1r ` ( n Mat ( Poly1 ` r ) ) ) ) ( -g ` ( n Mat ( Poly1 ` r ) ) ) ( ( n matToPolyMat r ) ` m ) ) ) ) = ( m e. B |-> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) ) | 
						
							| 46 |  | simpl |  |-  ( ( N e. Fin /\ R e. V ) -> N e. Fin ) | 
						
							| 47 |  | elex |  |-  ( R e. V -> R e. _V ) | 
						
							| 48 | 47 | adantl |  |-  ( ( N e. Fin /\ R e. V ) -> R e. _V ) | 
						
							| 49 | 3 | fvexi |  |-  B e. _V | 
						
							| 50 |  | mptexg |  |-  ( B e. _V -> ( m e. B |-> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) e. _V ) | 
						
							| 51 | 49 50 | mp1i |  |-  ( ( N e. Fin /\ R e. V ) -> ( m e. B |-> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) e. _V ) | 
						
							| 52 | 13 45 46 48 51 | ovmpod |  |-  ( ( N e. Fin /\ R e. V ) -> ( N CharPlyMat R ) = ( m e. B |-> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) ) | 
						
							| 53 | 1 52 | eqtrid |  |-  ( ( N e. Fin /\ R e. V ) -> C = ( m e. B |-> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) ) |