| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpmatfval.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 2 |  | chpmatfval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | chpmatfval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | chpmatfval.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 5 |  | chpmatfval.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 6 |  | chpmatfval.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑃 ) | 
						
							| 7 |  | chpmatfval.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 8 |  | chpmatfval.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 9 |  | chpmatfval.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 10 |  | chpmatfval.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 11 |  | chpmatfval.i | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 12 |  | df-chpmat | ⊢  CharPlyMat   =  ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ↦  ( ( 𝑛  maDet  ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →   CharPlyMat   =  ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ↦  ( ( 𝑛  maDet  ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 ) ) ) ) ) ) | 
						
							| 14 |  | oveq12 | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  Mat  𝑟 )  =  ( 𝑁  Mat  𝑅 ) ) | 
						
							| 15 | 14 2 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  Mat  𝑟 )  =  𝐴 ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 17 | 16 3 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  =  𝐵 ) | 
						
							| 18 |  | simpl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  𝑛  =  𝑁 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  𝑟  =  𝑅 ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Poly1 ‘ 𝑟 )  =  ( Poly1 ‘ 𝑅 ) ) | 
						
							| 21 | 20 4 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Poly1 ‘ 𝑟 )  =  𝑃 ) | 
						
							| 22 | 18 21 | oveq12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  maDet  ( Poly1 ‘ 𝑟 ) )  =  ( 𝑁  maDet  𝑃 ) ) | 
						
							| 23 | 22 6 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  maDet  ( Poly1 ‘ 𝑟 ) )  =  𝐷 ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( Poly1 ‘ 𝑟 )  =  ( Poly1 ‘ 𝑅 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Poly1 ‘ 𝑟 )  =  ( Poly1 ‘ 𝑅 ) ) | 
						
							| 26 | 25 4 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Poly1 ‘ 𝑟 )  =  𝑃 ) | 
						
							| 27 | 18 26 | oveq12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) )  =  ( 𝑁  Mat  𝑃 ) ) | 
						
							| 28 | 27 5 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) )  =  𝑌 ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  =  ( -g ‘ 𝑌 ) ) | 
						
							| 30 | 29 7 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  =   −  ) | 
						
							| 31 | 28 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  =  (  ·𝑠  ‘ 𝑌 ) ) | 
						
							| 32 | 31 9 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  =   ·  ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( var1 ‘ 𝑟 )  =  ( var1 ‘ 𝑅 ) ) | 
						
							| 34 | 33 8 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( var1 ‘ 𝑟 )  =  𝑋 ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( var1 ‘ 𝑟 )  =  𝑋 ) | 
						
							| 36 | 28 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  =  ( 1r ‘ 𝑌 ) ) | 
						
							| 37 | 36 11 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  =   1  ) | 
						
							| 38 | 32 35 37 | oveq123d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) )  =  ( 𝑋  ·   1  ) ) | 
						
							| 39 |  | oveq12 | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  matToPolyMat  𝑟 )  =  ( 𝑁  matToPolyMat  𝑅 ) ) | 
						
							| 40 | 39 10 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  matToPolyMat  𝑟 )  =  𝑇 ) | 
						
							| 41 | 40 | fveq1d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 )  =  ( 𝑇 ‘ 𝑚 ) ) | 
						
							| 42 | 30 38 41 | oveq123d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 ) )  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) ) ) | 
						
							| 43 | 23 42 | fveq12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( ( 𝑛  maDet  ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 ) ) )  =  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) ) ) ) | 
						
							| 44 | 17 43 | mpteq12dv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ↦  ( ( 𝑛  maDet  ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 ) ) ) )  =  ( 𝑚  ∈  𝐵  ↦  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) ) ) ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  ∧  ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 ) )  →  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ↦  ( ( 𝑛  maDet  ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 ) ) ) )  =  ( 𝑚  ∈  𝐵  ↦  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) ) ) ) ) | 
						
							| 46 |  | simpl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝑁  ∈  Fin ) | 
						
							| 47 |  | elex | ⊢ ( 𝑅  ∈  𝑉  →  𝑅  ∈  V ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝑅  ∈  V ) | 
						
							| 49 | 3 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 50 |  | mptexg | ⊢ ( 𝐵  ∈  V  →  ( 𝑚  ∈  𝐵  ↦  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) ) ) )  ∈  V ) | 
						
							| 51 | 49 50 | mp1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑚  ∈  𝐵  ↦  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) ) ) )  ∈  V ) | 
						
							| 52 | 13 45 46 48 51 | ovmpod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑁  CharPlyMat  𝑅 )  =  ( 𝑚  ∈  𝐵  ↦  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) ) ) ) ) | 
						
							| 53 | 1 52 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝐶  =  ( 𝑚  ∈  𝐵  ↦  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) ) ) ) ) |