Step |
Hyp |
Ref |
Expression |
1 |
|
chpmatfval.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
2 |
|
chpmatfval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
chpmatfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
chpmatfval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
5 |
|
chpmatfval.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
6 |
|
chpmatfval.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑃 ) |
7 |
|
chpmatfval.s |
⊢ − = ( -g ‘ 𝑌 ) |
8 |
|
chpmatfval.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
9 |
|
chpmatfval.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
10 |
|
chpmatfval.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
11 |
|
chpmatfval.i |
⊢ 1 = ( 1r ‘ 𝑌 ) |
12 |
|
df-chpmat |
⊢ CharPlyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) ) |
13 |
12
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → CharPlyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) ) ) |
14 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) ) |
15 |
14 2
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = 𝐴 ) |
16 |
15
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ 𝐴 ) ) |
17 |
16 3
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 ) |
18 |
|
simpl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑛 = 𝑁 ) |
19 |
|
simpr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
20 |
19
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Poly1 ‘ 𝑟 ) = ( Poly1 ‘ 𝑅 ) ) |
21 |
20 4
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Poly1 ‘ 𝑟 ) = 𝑃 ) |
22 |
18 21
|
oveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) = ( 𝑁 maDet 𝑃 ) ) |
23 |
22 6
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) = 𝐷 ) |
24 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Poly1 ‘ 𝑟 ) = ( Poly1 ‘ 𝑅 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Poly1 ‘ 𝑟 ) = ( Poly1 ‘ 𝑅 ) ) |
26 |
25 4
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Poly1 ‘ 𝑟 ) = 𝑃 ) |
27 |
18 26
|
oveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) = ( 𝑁 Mat 𝑃 ) ) |
28 |
27 5
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) = 𝑌 ) |
29 |
28
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) = ( -g ‘ 𝑌 ) ) |
30 |
29 7
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) = − ) |
31 |
28
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) = ( ·𝑠 ‘ 𝑌 ) ) |
32 |
31 9
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) = · ) |
33 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( var1 ‘ 𝑟 ) = ( var1 ‘ 𝑅 ) ) |
34 |
33 8
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( var1 ‘ 𝑟 ) = 𝑋 ) |
35 |
34
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( var1 ‘ 𝑟 ) = 𝑋 ) |
36 |
28
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) = ( 1r ‘ 𝑌 ) ) |
37 |
36 11
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) = 1 ) |
38 |
32 35 37
|
oveq123d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) = ( 𝑋 · 1 ) ) |
39 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 matToPolyMat 𝑟 ) = ( 𝑁 matToPolyMat 𝑅 ) ) |
40 |
39 10
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 matToPolyMat 𝑟 ) = 𝑇 ) |
41 |
40
|
fveq1d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) = ( 𝑇 ‘ 𝑚 ) ) |
42 |
30 38 41
|
oveq123d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) |
43 |
23 42
|
fveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) = ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) |
44 |
17 43
|
mpteq12dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
45 |
44
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
46 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
47 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
48 |
47
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ V ) |
49 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
50 |
|
mptexg |
⊢ ( 𝐵 ∈ V → ( 𝑚 ∈ 𝐵 ↦ ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) ∈ V ) |
51 |
49 50
|
mp1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑚 ∈ 𝐵 ↦ ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) ∈ V ) |
52 |
13 45 46 48 51
|
ovmpod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 CharPlyMat 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
53 |
1 52
|
syl5eq |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝐶 = ( 𝑚 ∈ 𝐵 ↦ ( 𝐷 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑚 ) ) ) ) ) |