| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpmatfval.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 2 |  | chpmatfval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | chpmatfval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | chpmatfval.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 5 |  | chpmatfval.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 6 |  | chpmatfval.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑃 ) | 
						
							| 7 |  | chpmatfval.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 8 |  | chpmatfval.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 9 |  | chpmatfval.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 10 |  | chpmatfval.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 11 |  | chpmatfval.i | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 11 | chpmatfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝐶  =  ( 𝑚  ∈  𝐵  ↦  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) ) ) ) ) | 
						
							| 13 | 12 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵 )  →  𝐶  =  ( 𝑚  ∈  𝐵  ↦  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) ) ) ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑚  =  𝑀  →  ( 𝑇 ‘ 𝑚 )  =  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝑚  =  𝑀  →  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) )  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝑚  =  𝑀  →  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) ) )  =  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑚 ) ) )  =  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) | 
						
							| 18 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 ) | 
						
							| 19 |  | fvexd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵 )  →  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) )  ∈  V ) | 
						
							| 20 | 13 17 18 19 | fvmptd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵 )  →  ( 𝐶 ‘ 𝑀 )  =  ( 𝐷 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) |