Metamath Proof Explorer


Theorem chpmatval2

Description: The characteristic polynomial of a (square) matrix (expressed with the Leibnitz formula for the determinant). (Contributed by AV, 2-Aug-2019)

Ref Expression
Hypotheses chpmatply1.c C=NCharPlyMatR
chpmatply1.a A=NMatR
chpmatply1.b B=BaseA
chpmatply1.p P=Poly1R
chpmatval2.y Y=NMatP
chpmatval2.m1 -˙=-Y
chpmatval2.x X=var1R
chpmatval2.t1 ·˙=Y
chpmatval2.t T=NmatToPolyMatR
chpmatval2.i 1˙=1Y
chpmatval2.g G=SymGrpN
chpmatval2.h H=BaseG
chpmatval2.z Z=ℤRHomP
chpmatval2.s S=pmSgnN
chpmatval2.u U=mulGrpP
chpmatval2.rm ×˙=P
Assertion chpmatval2 NFinRRingMBCM=PpHZSp×˙UxNpxX·˙1˙-˙TMx

Proof

Step Hyp Ref Expression
1 chpmatply1.c C=NCharPlyMatR
2 chpmatply1.a A=NMatR
3 chpmatply1.b B=BaseA
4 chpmatply1.p P=Poly1R
5 chpmatval2.y Y=NMatP
6 chpmatval2.m1 -˙=-Y
7 chpmatval2.x X=var1R
8 chpmatval2.t1 ·˙=Y
9 chpmatval2.t T=NmatToPolyMatR
10 chpmatval2.i 1˙=1Y
11 chpmatval2.g G=SymGrpN
12 chpmatval2.h H=BaseG
13 chpmatval2.z Z=ℤRHomP
14 chpmatval2.s S=pmSgnN
15 chpmatval2.u U=mulGrpP
16 chpmatval2.rm ×˙=P
17 eqid NmaDetP=NmaDetP
18 1 2 3 4 5 17 6 7 8 9 10 chpmatval NFinRRingMBCM=NmaDetPX·˙1˙-˙TM
19 eqid NMatP=NMatP
20 5 fveq2i -Y=-NMatP
21 6 20 eqtri -˙=-NMatP
22 5 fveq2i Y=NMatP
23 8 22 eqtri ·˙=NMatP
24 5 fveq2i 1Y=1NMatP
25 10 24 eqtri 1˙=1NMatP
26 eqid X·˙1˙-˙TM=X·˙1˙-˙TM
27 2 3 4 19 7 9 21 23 25 26 chmatcl NFinRRingMBX·˙1˙-˙TMBaseNMatP
28 5 eqcomi NMatP=Y
29 28 fveq2i BaseNMatP=BaseY
30 11 fveq2i BaseG=BaseSymGrpN
31 12 30 eqtri H=BaseSymGrpN
32 17 5 29 31 13 14 16 15 mdetleib X·˙1˙-˙TMBaseNMatPNmaDetPX·˙1˙-˙TM=PpHZSp×˙UxNpxX·˙1˙-˙TMx
33 27 32 syl NFinRRingMBNmaDetPX·˙1˙-˙TM=PpHZSp×˙UxNpxX·˙1˙-˙TMx
34 18 33 eqtrd NFinRRingMBCM=PpHZSp×˙UxNpxX·˙1˙-˙TMx