Metamath Proof Explorer


Theorem chpmatval2

Description: The characteristic polynomial of a (square) matrix (expressed with the Leibnitz formula for the determinant). (Contributed by AV, 2-Aug-2019)

Ref Expression
Hypotheses chpmatply1.c C = N CharPlyMat R
chpmatply1.a A = N Mat R
chpmatply1.b B = Base A
chpmatply1.p P = Poly 1 R
chpmatval2.y Y = N Mat P
chpmatval2.m1 - ˙ = - Y
chpmatval2.x X = var 1 R
chpmatval2.t1 · ˙ = Y
chpmatval2.t T = N matToPolyMat R
chpmatval2.i 1 ˙ = 1 Y
chpmatval2.g G = SymGrp N
chpmatval2.h H = Base G
chpmatval2.z Z = ℤRHom P
chpmatval2.s S = pmSgn N
chpmatval2.u U = mulGrp P
chpmatval2.rm × ˙ = P
Assertion chpmatval2 N Fin R Ring M B C M = P p H Z S p × ˙ U x N p x X · ˙ 1 ˙ - ˙ T M x

Proof

Step Hyp Ref Expression
1 chpmatply1.c C = N CharPlyMat R
2 chpmatply1.a A = N Mat R
3 chpmatply1.b B = Base A
4 chpmatply1.p P = Poly 1 R
5 chpmatval2.y Y = N Mat P
6 chpmatval2.m1 - ˙ = - Y
7 chpmatval2.x X = var 1 R
8 chpmatval2.t1 · ˙ = Y
9 chpmatval2.t T = N matToPolyMat R
10 chpmatval2.i 1 ˙ = 1 Y
11 chpmatval2.g G = SymGrp N
12 chpmatval2.h H = Base G
13 chpmatval2.z Z = ℤRHom P
14 chpmatval2.s S = pmSgn N
15 chpmatval2.u U = mulGrp P
16 chpmatval2.rm × ˙ = P
17 eqid N maDet P = N maDet P
18 1 2 3 4 5 17 6 7 8 9 10 chpmatval N Fin R Ring M B C M = N maDet P X · ˙ 1 ˙ - ˙ T M
19 eqid N Mat P = N Mat P
20 5 fveq2i - Y = - N Mat P
21 6 20 eqtri - ˙ = - N Mat P
22 5 fveq2i Y = N Mat P
23 8 22 eqtri · ˙ = N Mat P
24 5 fveq2i 1 Y = 1 N Mat P
25 10 24 eqtri 1 ˙ = 1 N Mat P
26 eqid X · ˙ 1 ˙ - ˙ T M = X · ˙ 1 ˙ - ˙ T M
27 2 3 4 19 7 9 21 23 25 26 chmatcl N Fin R Ring M B X · ˙ 1 ˙ - ˙ T M Base N Mat P
28 5 eqcomi N Mat P = Y
29 28 fveq2i Base N Mat P = Base Y
30 11 fveq2i Base G = Base SymGrp N
31 12 30 eqtri H = Base SymGrp N
32 17 5 29 31 13 14 16 15 mdetleib X · ˙ 1 ˙ - ˙ T M Base N Mat P N maDet P X · ˙ 1 ˙ - ˙ T M = P p H Z S p × ˙ U x N p x X · ˙ 1 ˙ - ˙ T M x
33 27 32 syl N Fin R Ring M B N maDet P X · ˙ 1 ˙ - ˙ T M = P p H Z S p × ˙ U x N p x X · ˙ 1 ˙ - ˙ T M x
34 18 33 eqtrd N Fin R Ring M B C M = P p H Z S p × ˙ U x N p x X · ˙ 1 ˙ - ˙ T M x