| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat2pmatbas.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 2 |  | mat2pmatbas.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | mat2pmatbas.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | mat2pmatbas.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | mat2pmatbas.c |  |-  C = ( N Mat P ) | 
						
							| 6 |  | mat2pmatbas0.h |  |-  H = ( Base ` C ) | 
						
							| 7 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 8 | 2 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 9 | 7 8 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) | 
						
							| 10 | 4 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 11 | 7 10 | syl |  |-  ( R e. CRing -> P e. Ring ) | 
						
							| 12 | 5 | matring |  |-  ( ( N e. Fin /\ P e. Ring ) -> C e. Ring ) | 
						
							| 13 | 11 12 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> C e. Ring ) | 
						
							| 14 | 1 2 3 4 5 6 | mat2pmatghm |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( A GrpHom C ) ) | 
						
							| 15 | 7 14 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> T e. ( A GrpHom C ) ) | 
						
							| 16 | 1 2 3 4 5 6 | mat2pmatmhm |  |-  ( ( N e. Fin /\ R e. CRing ) -> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) ) | 
						
							| 17 | 15 16 | jca |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( T e. ( A GrpHom C ) /\ T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) ) ) | 
						
							| 18 |  | eqid |  |-  ( mulGrp ` A ) = ( mulGrp ` A ) | 
						
							| 19 |  | eqid |  |-  ( mulGrp ` C ) = ( mulGrp ` C ) | 
						
							| 20 | 18 19 | isrhm |  |-  ( T e. ( A RingHom C ) <-> ( ( A e. Ring /\ C e. Ring ) /\ ( T e. ( A GrpHom C ) /\ T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) ) ) ) | 
						
							| 21 | 9 13 17 20 | syl21anbrc |  |-  ( ( N e. Fin /\ R e. CRing ) -> T e. ( A RingHom C ) ) |