| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpwscmat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pmatcollpwscmat.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pmatcollpwscmat.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pmatcollpwscmat.m1 |  |-  .* = ( .s ` C ) | 
						
							| 5 |  | pmatcollpwscmat.e1 |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 6 |  | pmatcollpwscmat.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | pmatcollpwscmat.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 8 |  | pmatcollpwscmat.a |  |-  A = ( N Mat R ) | 
						
							| 9 |  | pmatcollpwscmat.d |  |-  D = ( Base ` A ) | 
						
							| 10 |  | pmatcollpwscmat.u |  |-  U = ( algSc ` P ) | 
						
							| 11 |  | pmatcollpwscmat.k |  |-  K = ( Base ` R ) | 
						
							| 12 |  | pmatcollpwscmat.e2 |  |-  E = ( Base ` P ) | 
						
							| 13 |  | pmatcollpwscmat.s |  |-  S = ( algSc ` P ) | 
						
							| 14 |  | pmatcollpwscmat.1 |  |-  .1. = ( 1r ` C ) | 
						
							| 15 |  | pmatcollpwscmat.m2 |  |-  M = ( Q .* .1. ) | 
						
							| 16 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 17 | 1 2 3 12 4 14 | 1pmatscmul |  |-  ( ( N e. Fin /\ R e. Ring /\ Q e. E ) -> ( Q .* .1. ) e. B ) | 
						
							| 18 | 15 17 | eqeltrid |  |-  ( ( N e. Fin /\ R e. Ring /\ Q e. E ) -> M e. B ) | 
						
							| 19 | 16 18 | syl3an2 |  |-  ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> M e. B ) | 
						
							| 20 | 1 2 3 4 5 6 7 | pmatcollpw |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) ) | 
						
							| 21 | 19 20 | syld3an3 |  |-  ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) ) | 
						
							| 22 | 16 | anim2i |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 23 | 22 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 24 |  | simp3 |  |-  ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> Q e. E ) | 
						
							| 25 | 24 | anim1ci |  |-  ( ( ( N e. Fin /\ R e. CRing /\ Q e. E ) /\ n e. NN0 ) -> ( n e. NN0 /\ Q e. E ) ) | 
						
							| 26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pmatcollpwscmatlem2 |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( n e. NN0 /\ Q e. E ) ) -> ( T ` ( M decompPMat n ) ) = ( ( U ` ( ( coe1 ` Q ) ` n ) ) .* .1. ) ) | 
						
							| 27 | 23 25 26 | syl2an2r |  |-  ( ( ( N e. Fin /\ R e. CRing /\ Q e. E ) /\ n e. NN0 ) -> ( T ` ( M decompPMat n ) ) = ( ( U ` ( ( coe1 ` Q ) ` n ) ) .* .1. ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ Q e. E ) /\ n e. NN0 ) -> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) = ( ( n .^ X ) .* ( ( U ` ( ( coe1 ` Q ) ` n ) ) .* .1. ) ) ) | 
						
							| 29 | 28 | mpteq2dva |  |-  ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) = ( n e. NN0 |-> ( ( n .^ X ) .* ( ( U ` ( ( coe1 ` Q ) ` n ) ) .* .1. ) ) ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( ( U ` ( ( coe1 ` Q ) ` n ) ) .* .1. ) ) ) ) ) | 
						
							| 31 | 21 30 | eqtrd |  |-  ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( ( U ` ( ( coe1 ` Q ) ` n ) ) .* .1. ) ) ) ) ) |