Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpwscmat.p |
|- P = ( Poly1 ` R ) |
2 |
|
pmatcollpwscmat.c |
|- C = ( N Mat P ) |
3 |
|
pmatcollpwscmat.b |
|- B = ( Base ` C ) |
4 |
|
pmatcollpwscmat.m1 |
|- .* = ( .s ` C ) |
5 |
|
pmatcollpwscmat.e1 |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
6 |
|
pmatcollpwscmat.x |
|- X = ( var1 ` R ) |
7 |
|
pmatcollpwscmat.t |
|- T = ( N matToPolyMat R ) |
8 |
|
pmatcollpwscmat.a |
|- A = ( N Mat R ) |
9 |
|
pmatcollpwscmat.d |
|- D = ( Base ` A ) |
10 |
|
pmatcollpwscmat.u |
|- U = ( algSc ` P ) |
11 |
|
pmatcollpwscmat.k |
|- K = ( Base ` R ) |
12 |
|
pmatcollpwscmat.e2 |
|- E = ( Base ` P ) |
13 |
|
pmatcollpwscmat.s |
|- S = ( algSc ` P ) |
14 |
|
pmatcollpwscmat.1 |
|- .1. = ( 1r ` C ) |
15 |
|
pmatcollpwscmat.m2 |
|- M = ( Q .* .1. ) |
16 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
17 |
1 2 3 12 4 14
|
1pmatscmul |
|- ( ( N e. Fin /\ R e. Ring /\ Q e. E ) -> ( Q .* .1. ) e. B ) |
18 |
15 17
|
eqeltrid |
|- ( ( N e. Fin /\ R e. Ring /\ Q e. E ) -> M e. B ) |
19 |
16 18
|
syl3an2 |
|- ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> M e. B ) |
20 |
1 2 3 4 5 6 7
|
pmatcollpw |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) ) |
21 |
19 20
|
syld3an3 |
|- ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) ) |
22 |
16
|
anim2i |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) |
23 |
22
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> ( N e. Fin /\ R e. Ring ) ) |
24 |
|
simp3 |
|- ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> Q e. E ) |
25 |
24
|
anim1ci |
|- ( ( ( N e. Fin /\ R e. CRing /\ Q e. E ) /\ n e. NN0 ) -> ( n e. NN0 /\ Q e. E ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pmatcollpwscmatlem2 |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( n e. NN0 /\ Q e. E ) ) -> ( T ` ( M decompPMat n ) ) = ( ( U ` ( ( coe1 ` Q ) ` n ) ) .* .1. ) ) |
27 |
23 25 26
|
syl2an2r |
|- ( ( ( N e. Fin /\ R e. CRing /\ Q e. E ) /\ n e. NN0 ) -> ( T ` ( M decompPMat n ) ) = ( ( U ` ( ( coe1 ` Q ) ` n ) ) .* .1. ) ) |
28 |
27
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ Q e. E ) /\ n e. NN0 ) -> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) = ( ( n .^ X ) .* ( ( U ` ( ( coe1 ` Q ) ` n ) ) .* .1. ) ) ) |
29 |
28
|
mpteq2dva |
|- ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) = ( n e. NN0 |-> ( ( n .^ X ) .* ( ( U ` ( ( coe1 ` Q ) ` n ) ) .* .1. ) ) ) ) |
30 |
29
|
oveq2d |
|- ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( ( U ` ( ( coe1 ` Q ) ` n ) ) .* .1. ) ) ) ) ) |
31 |
21 30
|
eqtrd |
|- ( ( N e. Fin /\ R e. CRing /\ Q e. E ) -> M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( ( U ` ( ( coe1 ` Q ) ` n ) ) .* .1. ) ) ) ) ) |