| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpwscmat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpwscmat.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpwscmat.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpwscmat.m1 | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 5 |  | pmatcollpwscmat.e1 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpwscmat.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | pmatcollpwscmat.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 |  | pmatcollpwscmat.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 9 |  | pmatcollpwscmat.d | ⊢ 𝐷  =  ( Base ‘ 𝐴 ) | 
						
							| 10 |  | pmatcollpwscmat.u | ⊢ 𝑈  =  ( algSc ‘ 𝑃 ) | 
						
							| 11 |  | pmatcollpwscmat.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 12 |  | pmatcollpwscmat.e2 | ⊢ 𝐸  =  ( Base ‘ 𝑃 ) | 
						
							| 13 |  | pmatcollpwscmat.s | ⊢ 𝑆  =  ( algSc ‘ 𝑃 ) | 
						
							| 14 |  | pmatcollpwscmat.1 | ⊢  1   =  ( 1r ‘ 𝐶 ) | 
						
							| 15 |  | pmatcollpwscmat.m2 | ⊢ 𝑀  =  ( 𝑄  ∗   1  ) | 
						
							| 16 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 17 | 1 2 3 12 4 14 | 1pmatscmul | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  →  ( 𝑄  ∗   1  )  ∈  𝐵 ) | 
						
							| 18 | 15 17 | eqeltrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  →  𝑀  ∈  𝐵 ) | 
						
							| 19 | 16 18 | syl3an2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑄  ∈  𝐸 )  →  𝑀  ∈  𝐵 ) | 
						
							| 20 | 1 2 3 4 5 6 7 | pmatcollpw | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) | 
						
							| 21 | 19 20 | syld3an3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑄  ∈  𝐸 )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) | 
						
							| 22 | 16 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 23 | 22 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑄  ∈  𝐸 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 24 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑄  ∈  𝐸 )  →  𝑄  ∈  𝐸 ) | 
						
							| 25 | 24 | anim1ci | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑄  ∈  𝐸 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) ) | 
						
							| 26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pmatcollpwscmatlem2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝑛 ) )  ∗   1  ) ) | 
						
							| 27 | 23 25 26 | syl2an2r | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑄  ∈  𝐸 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝑛 ) )  ∗   1  ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑄  ∈  𝐸 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝑛 ) )  ∗   1  ) ) ) | 
						
							| 29 | 28 | mpteq2dva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑄  ∈  𝐸 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝑛 ) )  ∗   1  ) ) ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑄  ∈  𝐸 )  →  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝑛 ) )  ∗   1  ) ) ) ) ) | 
						
							| 31 | 21 30 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑄  ∈  𝐸 )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝑛 ) )  ∗   1  ) ) ) ) ) |