| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pmatcollpw.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pmatcollpw.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
pmatcollpw.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐶 ) |
| 5 |
|
pmatcollpw.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 6 |
|
pmatcollpw.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 7 |
|
pmatcollpw.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 8 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 9 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 10 |
1 2 3 9 5 6
|
pmatcollpw2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) ) ) ) |
| 11 |
8 10
|
syl3an2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) ) ) ) |
| 12 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) ) |
| 13 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) = ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ) |
| 14 |
13
|
oveq1d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) = ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) ) → ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) = ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) |
| 16 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑎 ∈ 𝑁 ) |
| 17 |
|
simpr |
⊢ ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑏 ∈ 𝑁 ) |
| 18 |
17
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑏 ∈ 𝑁 ) |
| 19 |
|
simp2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ CRing ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ CRing ) |
| 21 |
20 8
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 22 |
21
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑅 ∈ Ring ) |
| 23 |
|
eqid |
⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) |
| 24 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 25 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
| 26 |
|
simp3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ 𝐵 ) |
| 28 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 29 |
1 2 3 23 25
|
decpmatcl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 30 |
20 27 28 29
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 32 |
23 24 25 16 18 31
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 |
|
simplr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
| 34 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 35 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 36 |
24 1 6 9 34 5 35
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 37 |
22 32 33 36
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 38 |
12 15 16 18 37
|
ovmpod |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) 𝑏 ) = ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) |
| 39 |
1 2 3 4 5 6 7
|
pmatcollpwlem |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) = ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) 𝑏 ) ) |
| 40 |
39
|
3expb |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) = ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) 𝑏 ) ) |
| 41 |
38 40
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) 𝑏 ) ) |
| 42 |
41
|
ralrimivva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) 𝑏 ) ) |
| 43 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑁 ∈ Fin ) |
| 44 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 45 |
8 44
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Ring ) |
| 46 |
45
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
| 47 |
46
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ Ring ) |
| 48 |
21
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 49 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 50 |
|
simp3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 51 |
30
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 52 |
23 24 25 49 50 51
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 53 |
28
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑛 ∈ ℕ0 ) |
| 54 |
24 1 6 9 34 5 35
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 55 |
48 52 53 54
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 56 |
2 35 3 43 47 55
|
matbas2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) ∈ 𝐵 ) |
| 57 |
8
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 58 |
1 6 34 5 35
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 59 |
57 58
|
sylan |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 60 |
57
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 61 |
7 23 25 1 2
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ∈ ( Base ‘ 𝐶 ) ) |
| 62 |
43 60 30 61
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ∈ ( Base ‘ 𝐶 ) ) |
| 63 |
62 3
|
eleqtrrdi |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ∈ 𝐵 ) |
| 64 |
35 2 3 4
|
matvscl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ∧ ( ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ∈ 𝐵 ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ∈ 𝐵 ) |
| 65 |
43 47 59 63 64
|
syl22anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ∈ 𝐵 ) |
| 66 |
2 3
|
eqmat |
⊢ ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) ∈ 𝐵 ∧ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ∈ 𝐵 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ↔ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) 𝑏 ) ) ) |
| 67 |
56 65 66
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ↔ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) 𝑏 ) ) ) |
| 68 |
42 67
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) |
| 69 |
68
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) |
| 70 |
69
|
oveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) ) ) = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) |
| 71 |
11 70
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) |