| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpw.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpw.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpw.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 5 |  | pmatcollpw.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpw.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | pmatcollpw.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 9 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 10 | 1 2 3 9 5 6 | pmatcollpw2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 11 | 8 10 | syl3an2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 12 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) ) | 
						
							| 13 |  | oveq12 | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  =  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) )  =  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 ) )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) )  =  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 16 |  | simprl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑎  ∈  𝑁 ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑏  ∈  𝑁 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑏  ∈  𝑁 ) | 
						
							| 19 |  | simp2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  CRing ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  CRing ) | 
						
							| 21 | 20 8 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑅  ∈  Ring ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑁  Mat  𝑅 )  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 26 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 28 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 29 | 1 2 3 23 25 | decpmatcl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 30 | 20 27 28 29 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 32 | 23 24 25 16 18 31 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 33 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 34 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 35 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 36 | 24 1 6 9 34 5 35 | ply1tmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 37 | 22 32 33 36 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 38 | 12 15 16 18 37 | ovmpod | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) 𝑏 )  =  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 39 | 1 2 3 4 5 6 7 | pmatcollpwlem | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) )  =  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) 𝑏 ) ) | 
						
							| 40 | 39 | 3expb | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) )  =  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) 𝑏 ) ) | 
						
							| 41 | 38 40 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) 𝑏 ) ) | 
						
							| 42 | 41 | ralrimivva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) 𝑏 ) ) | 
						
							| 43 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑁  ∈  Fin ) | 
						
							| 44 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 45 | 8 44 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  Ring ) | 
						
							| 46 | 45 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  Ring ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑃  ∈  Ring ) | 
						
							| 48 | 21 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 49 |  | simp2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 50 |  | simp3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 51 | 30 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 52 | 23 24 25 49 50 51 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 53 | 28 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 54 | 24 1 6 9 34 5 35 | ply1tmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 55 | 48 52 53 54 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 56 | 2 35 3 43 47 55 | matbas2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) )  ∈  𝐵 ) | 
						
							| 57 | 8 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 58 | 1 6 34 5 35 | ply1moncl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 59 | 57 58 | sylan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 60 | 57 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 61 | 7 23 25 1 2 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 62 | 43 60 30 61 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 63 | 62 3 | eleqtrrdi | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  ∈  𝐵 ) | 
						
							| 64 | 35 2 3 4 | matvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  ∧  ( ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  ∈  𝐵 ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 65 | 43 47 59 63 64 | syl22anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 66 | 2 3 | eqmat | ⊢ ( ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) )  ∈  𝐵  ∧  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ∈  𝐵 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) 𝑏 ) ) ) | 
						
							| 67 | 56 65 66 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) 𝑏 ) ) ) | 
						
							| 68 | 42 67 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) | 
						
							| 69 | 68 | mpteq2dva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) | 
						
							| 71 | 11 70 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) |