| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw.p |  | 
						
							| 2 |  | pmatcollpw.c |  | 
						
							| 3 |  | pmatcollpw.b |  | 
						
							| 4 |  | pmatcollpw.m |  | 
						
							| 5 |  | pmatcollpw.e |  | 
						
							| 6 |  | pmatcollpw.x |  | 
						
							| 7 |  | pmatcollpw.t |  | 
						
							| 8 |  | crngring |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 1 2 3 9 5 6 | pmatcollpw2 |  | 
						
							| 11 | 8 10 | syl3an2 |  | 
						
							| 12 |  | eqidd |  | 
						
							| 13 |  | oveq12 |  | 
						
							| 14 | 13 | oveq1d |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 |  | simprl |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 | 17 | adantl |  | 
						
							| 19 |  | simp2 |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 20 8 | syl |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | simp3 |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 |  | simpr |  | 
						
							| 29 | 1 2 3 23 25 | decpmatcl |  | 
						
							| 30 | 20 27 28 29 | syl3anc |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 23 24 25 16 18 31 | matecld |  | 
						
							| 33 |  | simplr |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 24 1 6 9 34 5 35 | ply1tmcl |  | 
						
							| 37 | 22 32 33 36 | syl3anc |  | 
						
							| 38 | 12 15 16 18 37 | ovmpod |  | 
						
							| 39 | 1 2 3 4 5 6 7 | pmatcollpwlem |  | 
						
							| 40 | 39 | 3expb |  | 
						
							| 41 | 38 40 | eqtrd |  | 
						
							| 42 | 41 | ralrimivva |  | 
						
							| 43 |  | simpl1 |  | 
						
							| 44 | 1 | ply1ring |  | 
						
							| 45 | 8 44 | syl |  | 
						
							| 46 | 45 | 3ad2ant2 |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 | 21 | 3ad2ant1 |  | 
						
							| 49 |  | simp2 |  | 
						
							| 50 |  | simp3 |  | 
						
							| 51 | 30 | 3ad2ant1 |  | 
						
							| 52 | 23 24 25 49 50 51 | matecld |  | 
						
							| 53 | 28 | 3ad2ant1 |  | 
						
							| 54 | 24 1 6 9 34 5 35 | ply1tmcl |  | 
						
							| 55 | 48 52 53 54 | syl3anc |  | 
						
							| 56 | 2 35 3 43 47 55 | matbas2d |  | 
						
							| 57 | 8 | 3ad2ant2 |  | 
						
							| 58 | 1 6 34 5 35 | ply1moncl |  | 
						
							| 59 | 57 58 | sylan |  | 
						
							| 60 | 57 | adantr |  | 
						
							| 61 | 7 23 25 1 2 | mat2pmatbas |  | 
						
							| 62 | 43 60 30 61 | syl3anc |  | 
						
							| 63 | 62 3 | eleqtrrdi |  | 
						
							| 64 | 35 2 3 4 | matvscl |  | 
						
							| 65 | 43 47 59 63 64 | syl22anc |  | 
						
							| 66 | 2 3 | eqmat |  | 
						
							| 67 | 56 65 66 | syl2anc |  | 
						
							| 68 | 42 67 | mpbird |  | 
						
							| 69 | 68 | mpteq2dva |  | 
						
							| 70 | 69 | oveq2d |  | 
						
							| 71 | 11 70 | eqtrd |  |